a2 United States Patent

Beechuk et al.

US009241017B2

10) Patent No.: US 9,241,017 B2
(45) Date of Patent: Jan. 19, 2016

(54) SYSTEMS AND METHODS FOR CROSS
DOMAIN SERVICE COMPONENT
INTERACTION

(71) Applicant: salesforce.com, inc., San Francisco, CA
(US)

(72) Inventors: Scott D. Beechuk, San Francisco, CA
(US); Orjan N. Kjellberg, Walnut
Creek, CA (US); Arvind Krishnan, San
Francisco, CA (US)

(73) Assignee: salesforce.com, inc., San Francisco, CA
(US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 226 days.

(21) Appl. No.: 13/935,304

(22) Filed: Jul. 3, 2013

(65) Prior Publication Data
US 2014/0013246 Al Jan. 9, 2014

Related U.S. Application Data
(60) Provisional applicationNo. 61/667,804, filed on Jul. 3,

2012.
(51) Imt.ClL
GO6F 3/048 (2013.01)
HO4L 29/06 (2006.01)
(Continued)

(52) US.CL
CPC oo HO4L 65/403 (2013.01); G06Q 30/01
(2013.01); GO6Q 50/01 (2013.01); HO4L 51/32
(2013.01); GOGF 3/048 (2013.01); GO6Q 30/00
(2013.01); GO6Q 30/016 (2013.01); GO6Q
30/02 (2013.01); GO6Q 30/0281 (2013.01)

(58) Field of Classification Search
CPC HO4L 65/403; HO4L 51/32; GO6Q 50/01;
GO06Q 30/00; G06Q 30/01; GO6Q 30/016;
G06Q 30/02; G06Q 30/0281; GOG6F 3/048
USPC ottt 715/753
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

5,577,188 A 11/1996 Zhu
5,608,872 A 3/1997 Schwartz et al.

(Continued)
OTHER PUBLICATIONS

“Google Plus Users”, Google+Ripples, Oct. 31, 2011 [retrieved on
Feb. 21, 2012 from Internet at http://www.googleplusers.com/
google-ripples.html], 3 pages.

Primary Examiner — Patrick Riegler

(74) Attorney, Agent, or Firm — Weaver Austin Villen-
euve & Sampson LLP

(57) ABSTRACT

Disclosed are methods, apparatus, systems, and computer
readable storage media for interacting with components
across different domains in a single user interface in an online
social network. The user interface includes a first component
and a second component, where the first component exposes
content from a first database system at a first network domain
and the second component exposes content from a second
database system at a second network domain. A first interac-
tion with the first component is received at a computing
device, followed by a reference being provided in the second
component, where the reference includes information related
to the first interaction. A second interaction with the second
component regarding the reference can be received at the
computing device. Interactions between the components
hosted on different database systems can occur through an
application programming interface (API).

19 Claims, 22 Drawing Sheets

1800
 £xtcinal oo TN ¥ v
Customer Overheating issue with my new VX12 Status Closed
Scott Baschuk Helio Cirrus, | have instalisd my new VX12 and ii is getling very, very hot! ¥'m not sure if Priority Mecium
Acme this is hormal as the cutside of tie unit is difficull to touch due to ihe heat. Can you
(41551231234 please contact me lo provide guidance? Thanks, ... Case Owner Admin User
infaacme.com Gass Origin Emai

Case
@ 00001 0%1908
Email Cusiomer ke Portal Arswer Case Daialls
[5] Email B seicct a Tempiate
From [“sumpot@einus.com” <suppon@eiuzcom> | 7]
Io
infogzacme.com l
AddCo

Sublest
‘Your Cirtus support request |

| Write an emmail 1 the custormer... |

Articles { 4]
EGe —

<3|
Advanced Arficle Search 1916

¥] wny dous the V12 overheat?
ting I

1902 in Kac..
Email i cusmom
r saverrl N\ 1978
1904
1920 r

US 9,241,017 B2

Page 2
(51) Int.ClL 6,907,566 Bl 6/2005 McElfresh et al.
HO04L 12/58 2006.01 7,062,502 Bl 6/2006 Kesler
G060 50/00 (2012 01) 7,069,231 Bl 6/2006 Cinarkaya et al.
0 (2012.01) 7.069.497 Bl 6/2006 Desai
GO6Q 30/02 (2012.01) 7,100,111 B2 8/2006 McElfresh et al.
GO6Q 30/00 (2012.01) 7,181,758 Bl 2/2007 Chan
7.269,590 B2 9/2007 Hull et al.
. 7,289,976 B2 10/2007 Kihneman et al.
(56) References Cited 7340411 B2 3/2008 Cook
7356482 B2 4/2008 Frankland et al.
U.S. PATENT DOCUMENTS 7373,599 B2 5/2008 McElfresh et al.
5649,104 A 7/1997 Carleton et al. 7,401,094 Bl 7/2008 Kesler
5715450 A 2/1998 Ambrose et al 7,406,501 B2 772008 Szeto et al.
5761419 A 6/1998 Schwartz et al. 7412455 B2 82008 Dillon
T ooy Schwartz et a 7454,500 B2 11/2008 Boulter et al.
819, : : 7,508,789 B2 3/2009 Chan
5.821,937 A 10;1998 T"neﬁ! et a{ 7,599,935 B2 10/2009 La Rotonda et al.
g’g%gég i lé/ggg E‘.’ne lel“l~ 7603331 B2 10/2009 Tuzhilin et al.
073, im et al. 7,603,483 B2 10/2009 Psounis et al.
Toera A G100y romukong etal 7,620,655 B2 11/2009 Larsson et al.
5.083.227 A 11/1999 Nazem et al. ;’gég’ég g% %8}8 geyer ctal.
6,092,083 A 7/2000 Brodersen et al. 7608160 B2 4/2010 Bewven et al
6,161,149 A 12/2000 Achacoso et al. 7’730’478 B2 6/2010 Weissman '
6,169,534 BL 1/2001 Raffel etal. 7747648 Bl 62010 Kraft et al.
6,178,425 Bl 172001 Brodersen et al. 7779039 B2 82010 Weissman et al.
080011 B1 22001 Limetal 7,779,475 B2 82010 Jakobson et al.
6216135 Bl 4/2001 Brodersen et al. ;ggégf gf }%8}8 i‘;:ﬁ‘;ﬂf”l'
6,233,617 Bl 5/2001 Rothwein et al. "045 :
6936978 Bl 59001 Tughilin 7,945,653 B2 5/2011 Zuckerberg et al.
6.266.669 Bl 7/2001 Brodersen et al. 8,005,896 B2~ 8/2011 Cheah
8014943 B2 92011 Jakobson
6,288,717 Bl 9/2001 Dunkle 8015495 B2 9/2011 Achacoso et al.
0290330 By D001 Ritchie etal 8032,207 B2 10/2011 Jakobson
6324693 Bl 11/2001 Brodersen et al. 8,073,850 Bl 12/2011 Fiubbard et al.
032409 By 12001 Broderse 8,082,301 B2 12/2011 Ahlgren et al.
el B ume ma Spean B el
6,367,077 Bl 4/2002 Brodersen et al. oc ’
6.393.605 Bl 52002 Loomans 8,095,594 B2 1/2012 Beavgr_l et al.
6405220 Bl 6/2002 Brodersen et al. g’}gg’gg g% %83 (T:‘}‘f;ﬂm ctal
6411949 Bl 6/2002 Schaffer o
6.434550 Bl /2002 Warner ef al 8,209,308 B2 6/2012 Rueben et al.
6446089 Bl 9/2002 Brodersen et al. 8,209,333 B2 6/2012 Hubbard et al.
6.535.900 Bl 32003 Rust 8,275,836 B2 9/2012 Beaven et al.
6.549.008 Bl 4/2003 TLoomans 8,457,545 B2 62013 Chan
f ! " 8484111l B2 72013 Frankland et al.
g’ggg’ig? g% ‘5‘/3883 ?m rose et g 8490025 B2 7/2013 Jakobson et al.
6574635 B2 6/2003 Somb ong ?“L 8,504,945 B2 8/2013 Jakobson et al.
274, ’ tau ere“ll~ 8,510,045 B2 82013 Rueben etal.
6,577,726 Bl 6/2003 H}‘:’mg el“l~ 8,510,664 B2 82013 Rueben et al.
2’28};’?51;; gé 2/3883 %.uetal~ 8,566,301 B2 10/2013 Rueben et al.
Dok y ‘_metaai 8,646,103 B2 2/2014 Jakobson et al.
6,604,128 B2 8/2003 Diec et al- 8,881,000 B1* 112014 BIOOI weooeovevvvvevvvecennn, 715/235
g’gg?’gg g% 3/3883 éeﬁ et ot 2001/0044791 Al 112001 Richter et al.
Cesa03 Bl 11003 Z;fgfﬁi““” 2002/0072951 Al 6/2002 Leeetal.
054, : 2002/0082892 Al 6/2002 Raffel et al.
g’ggg’g‘s‘g g% %883 VB\;Odefsen ‘“it al. 2002/0129352 Al 9/2002 Brodersen et al.
6684433 B2 22004 Barcfl‘ereta~ | 2002/0140731 Al 10/2002 Subramaniam et al.
e y rg ersen et al. o 2002/0143997 Al 10/2002 Huang et al.
g’;;’;gg gi 2/3883 IS(u fimamaf;let : 2002/0162000 A1 10/2002 Parnell et al.
s Bl 45004 Sl?lt)crar(;:larnfetlme cal 2002/0165742 Al 11/2002 Robbins
6.728.960 Bl 4/2004 Loomansetal. 2003/0004971 AL 172003 Gong
728, g " o 2003/0018705 Al 1/2003 Chen et al.
g’;g’?gg gi g /3883 VBVarj avsky etla~ 2003/0018830 Al 1/2003 Chen et al.
2132 y To dersen ot al~ 2003/0066031 Al 4/2003 Laane et al.
6,732,111 B2 5 /2004 Bro dersen et a 2003/0066032 Al 4/2003 Ramachandran et al.
2’32‘3"221 g% %883]ng ersen et al. . 2003/0069936 Al 4/2003 Warner et al.
¢763501 Bl /2004 Zlﬁ mm*;mamet : 2003/0070000 Al 4/2003 Coker et al.
6765904 B2 712004 K_ue“l~ 2003/0070004 A1 4/2003 Mukundan et al.
6771229 Bl 82004 AH}? al 2003/0070005 Al 4/2003 Mukundan et al.
6757383 B2 82004 sgbfzfriﬁixét o 2003/0074418 Al 4/2003 Coker et al.
0804330 BL 102004 Tomeorin : 2003/0120675 Al 6/2003 Stauber et al.
6306565 B2 11/2004 Ritehic of a. 2003/0126027 AL* 7/2003 Nelson et al. oo, 705/26
6826582 BI 11/2004 Chatterje ef al. 2003/0151633 Al 82003 George et al.
6,826,745 B2 11/2004 Coker 2003/0159136 Al 8/2003 Huang et al.
6.829.655 Bl 122004 Huang etal. 2003/0187921 Al 10/2003 Diec et al.
6,842,748 Bl 1/2005 Warner et al. 2003/0189600 Al 10/2003 Gune et al.
6,850,895 B2 2/2005 Brodersen et al. 2003/0204427 Al 10/2003 Gune et al.
6,850,049 B2 2/2005 Warner et al. 2003/0206192 Al 11/2003 Chen et al.

US 9,241,017 B2

Page 3

(56) References Cited 2011/0218958 Al 9/2011 Warshavsky et al.

2011/0231240 A1* 9/2011 Schoenetal. ... 705/14.41

U.S. PATENT DOCUMENTS 2011/0247051 Al 10/2011 Bulumulla et al.

2012/0036200 A1* 2/2012 Cole .ovvvvvvrnrneenn. G06Q 50/01
2003/0225730 Al 12/2003 Warner et al.) 709/206
2004/0001092 A1 1/2004 Rothwein et al. 2012/0042218 Al 2/2012 Cinarkaya et al.
2004/0010489 Al 1/2004 Rio et al. 2012/0197871 Al* 82012 Mandel GOGF 17/30994
2004/0015981 Al 1/2004 Coker et al. 707/722
2004/0027388 Al 2/2004 Berg et al. 2012/0233137 Al 9/2012 Jakobson et al.
2004/0128001 Al 7/2004 Levin et al. 2012/0290407 Al 11/2012 Hubbard et al.
2004/0186860 Al 9/2004 Lee et al. 2013/0104072 Al* 4/2013 Havard ... GOG6F 3/048
2004/0193510 Al 9/2004 Catahan et al. 715/781
2004/0199489 Al 10/2004 Barnes-Leon et al. 2013/0212497 Al 8/2013 Zelenko et al.
2004/0199536 Al 10/2004 Barnes Leon et al. 2013/0218948 Al 8/2013 Jakobson
2004/0199543 Al 10/2004 Braud et al. 2013/0218949 Al 82013 Jakobson
2004/0249854 Al 12/2004 Barnes-Leon et al. 2013/0218966 Al 82013 Jakobson
2004/0260534 Al 12/2004 Pak et al. 2013/0247216 Al 9/2013 Cinarkaya et al.
2004/0260659 Al 12/2004 Chan et al. 2013/0339443 Al* 12/2013 Goldman HO4L 65/403
2004/0268299 Al 12/2004 Lei etal. 709204
2005/0050555 Al 3/2005 Exley et al. 2014/0359537 Al 12/2014 Jakobson et al.
2005/0091098 Al 4/2005 Brodersen et al. 2015/0006289 Al 1/2015 Jakobson et al.
2008/0249972 A1 10/2008 Dillon 2015/0007050 A1 1/2015 Jakobson et al.
2009/0063415 Al 3/2009 Chatfield et al. 2015/0095162 Al 4/2015 Jakobson et al.
2009/0100342 Al 4/2009 Jakobson 2015/0142596 Al 5/2015 Jakobson et al.
2009/0177744 A1 7/2009 Marlow et al. 2015/0172563 Al 6/2015 Jakobson et al.
2009/0182589 A1* 7/2009 Kendall etal.c.....c....... 705/5
2011/0016533 Al* 1/2011 Zeigleretal. ..., 726/26 * cited by examiner

US 9,241,017 B2

U.S. Patent Jan. 19, 2016 Sheet 1 of 22
22 24 9
P o™ oo™
Tenani System Frogram
Data Data Code
Storage Storage
17
— L I
fw“i 8 | Processor
System Process Space
Application >
Platform 0 _\\
Network Systemi1g
Interface

{ser
System
12

Network
14

FIGURE 1A

Environment
10

User
System
12

U.S. Patent Jan. 19, 2016 Sheet 2 of 22 US 9,241,017 B2

- 22
T Fr—
T - 23

| TenantSpace | 2

S

Tenant Dala
Application MetaData 1~ 116

Tenant DB -

Application
Setup Tenant Management System
Mechanism 38 Process Process % 18
110 182
Save
Routines 368
(Tenant 1§l Tenant 2 Tenant N
PL/SOQL Process || Process Process
34
— 18 N~ o4 = 28
AP 32 Ui 30
-~ e, ~ o T
. =
S -~ - _ . - s P
., ~ -
Appl. ~ 100, Appl. 100y
Server{ 07 Server -

Environment
Network
14

12~
Processor Memory
System 12A | | System 128
Input Output FIGURE 1B
System 12C] | System 12D

~12

Core
Swilch 1 \ E

% 232

U.S. Patent Jan. 19, 2016 Sheet 3 of 22 US 9,241,017 B2

258
‘a Switch 3 . Q g: ;
- atabase
ﬁﬁ A7 15 Load 2002 /™ Storage
Beiancer Active D'IB Switch
Core 224 Firewall {1of2)
Router 2 Syitch Swstch 4236
Pod 2 200
FIGURE 24
238
) /~—244
Pod
/ E)\wltCh'-li
/:;/‘ M 288
= 265 &
Content 284 s
= { 284 =y
Batch
N B8 280 . hep
Servers = (. B | Servers
Content \gg | 286 . g]
Search 1%‘ y y f; s Batt,t‘
1\/\:‘(/{1—-— 29{} Sel"\/@ s Quei’y \\%L ‘; Agél(: S arvars
Lo Servers e 5 >
- ervers
Database f ’ ie Fgrce
Instance / f wervers 29@4\1{/
\Q'? / fzgz e —
299 JA ‘w Database
- N indexers
QFS / OFS

228“‘\\ p ; % \ -
v A 7 —296 208— [-
8 e |
i:);ad = Fiigforce
Ralancer NFS FIGURE 2B Storage

U.S. Patent

310 ——.| Database system receives a

320 = Database system writes new

340
\ Add feed update to feed of first

Jan. 19, 2016 Sheet 4 of 22

request to update a first record

¥

data to first record

¥

Generate feed update

J,

record

X

350
Y identify followers of first record
360 - Add the feed update o a news feed of

egch follower

l

Follower accesseas histher news feed
and sees the updale

FIGURE 3

US 9,241,017 B2

US 9,241,017 B2

Sheet 5 of 22

Jan. 19, 2016

U.S. Patent

b JHNOIH

00y

S

1574
{18MmO10))
. 188N puoseg 9
D008 1os8
10 poay pud 30 PE2Y
103 188nbhay 103 359nboy
iy iy 58
LWIBISAG ssegeIeg S04
aseqele] B0 JBMONO S
g
7y : pots mon
e
P o DOD, MBN
747 L7
DJO0S N z {S)I0SSED0I
BIBD MBN))

gy

L

¥ DIODBY
o1 eyepdn

[*10372
198N 1814

U.S. Patent Jan. 19, 2016 Sheet 6 of 22 US 9,241,017 B2

510 Database system identifies an
3 action of a first user that triggers
an event

o

590 ——) B0esthe event qualify for a
feed update?

i Yas

Generate feed update about the
action

l

540 - Addfeed update to feed of first
user

i

550 Identify followers of first user

i

Add the feed update t0 a news
feed of each follower

|

570 - rolloweraccesses the news
feed and sees the feed update

el SHOD

530 e

560 =

FIGURE 5

U.S. Patent Jan. 19, 2016 Sheet 7 of 22 US 9,241,017 B2

610 — Database system receives a
message associated with a user

i

620 ——] Add messagetoafeed (e.g. as
a profile feed) of the user

i

630 , .
7Y T\ Database system identifies
followers of user

i

B840 —_ | Add the message to a news feed
of each follower

|

o
650 | Follower accesses a news feed
and sees the message

L

660 - Database system receives a
comment about the message

i

670 — Add comment to the news feed
of each follower

FIGURE 6

US 9,241,017 B2

Sheet 8 of 22

Jan. 19, 2016

U.S. Patent

VL UPIE]

JESWHLOD B SIA

188
‘saopndiues AUSt 00 9ABY |

Suiepy 1Es

Wied Q819 ‘ABDIOISOA
SO AU SU S DMAS J9pUN JBUBAU BU UC S By BY L Jeneg il

IABDO] HOOMBY MBU AU 10D
gzLanrenl e

OIS Mo BU] @85 O} M

MB) B DSIPBS) UsBg SBY 1 §1USIU0D U §OBUD NCA pID 'aINs J0U() UoxRE Seluel

el 9111 ALDIGISOA
SOl O ¥E) PUNGCIE ¥SE ||| 31001 Mhmﬁ

Wl 80 ABDIBISO A |44 "S0MIS SoLun

Lurs fuudg siyl 8j8ap sliosame
Ui IR0 BUILLOD St I8¢ puEay }

suRpe wes

M DLy ABDIGISAA 1] Bl

dnoifi g eg
Mmool oy sbiug 1o adosd pul

051l iy eag (@) Buimojjod

{Lad) pe

TS

104 BigEpead Asn 331 |dep
‘SSBUIBNG 410 O slueuodLuon Suispun By 8

\ B SEY NG quing | UoSBYOT Bl m s | Am m.m w
\ JOEONGS wdyp N m 1
L 480, DAAS oY 100D 210U40Y AU AR QUDAUR 320 SIMEH IBNiEg “.Q M = @
0gL & spalqo NM

SIBULUSHE LIEG) SUIABY S0 9
g e shnb o off 1ou ssop 1 ybnoye
N0 JUBLNDGP B}

QUMD MRIA sH0ogIsn - siubisul sanneducs

wm,.\nccu JUBWRCOE oY pajscd sey Jened e
014 6002 ‘vz Ainr Aepoy

P] gy worny

;ue Buniom noA sug EESW mm mmIDﬁm m\wm@u

e

AlEAloons SIC 7 AY JsuieBe 21oduWins 01 SN RO|IR (4 14 UORELIOIL SJEUS 03 eorld v

dnoin sannodwiony 7AW

spagagueny suodey sspunuoddo sepuel sjunoooy oo Ry BLaol

dieH

dmag suiBH JeBg

US 9,241,017 B2

Sheet 9 of 22

Jan. 19, 2016

U.S. Patent

8 JeNoid

JUBLLLIOT & SJIAA m

"AGBIBAS SENOSID G} WM NoA 4 6

11 & BLU BAIT) 1BS,

Wd @y "ABPRISISSA
£ (8B} JUNCUDE SILY UG PEYIOM | USiiEd ASH Jened g

TESUIET WwdiL '€ 80 DNAS

JIB0DGE 7 AXE 8L uD s Aaneq doyde) punoie U

USURGGS wdy g ‘Aepimss
+ "

reckuos yonoy swios Bugieb ol aps yseN B8

SO0 ‘£Z AN Aupaase

FUBLULIOD € SJEA |

Wed 38271 Aepioisaq "obu

T

5,510 SiL) 'sa, ddew axer

WY L) Aepuaisas Bunssion uike me 2oy

TGS we) Aep

10 jpaoidde

1684 MEZ L -AIrsoddOs Lo ong

10} ponrLgnS Usag 18n] SBY JUNCOSID © SIRBRIA 0601 — 80U ‘ZAX

ud 7 onogg o

TUSTOUIGTS WE Y |1/ 'ABpIeISS A

‘w7 Anp Aepo
019 BOOZ VT AN ARPOY

s3] wum O wozhy

oM nOA o umg.ﬁw £y

{1} 1onEyD £ «

MEZ L-AnunuoddQ

ﬂ usgs sjokney @w

Jepuees

-

1ebpiA

LLOD 2010§S0]ES

woossiojsales £3

U5IEGG SOUGREY
UMo | Sl G} i]

& iy yodees |
y3ieen

spieogyseE suoday

SIDRIOG SHNOoOY sdnodn Bjosd A SWIoH

projs seeg

yfion

digog

SLLBH JoEd

J3IOSOTES

U.S. Patent

Jan. 19, 2016 Sheet 10 of 22 US 9,241,017 B2
Event Object Created by Event Comment Time/
D 811 D912 D913 D 831 832 Date 933
“ o« 10-21-2010
E1 08615 us E37 539 PM
£2 489 U101 E37 89-17-2010

Event History Table 810

Comment Table 930

Event Post Text Time/

Event Old value New
D 921 922 value 923
£37 300 400
E37 4.23 4.10
: Field Change Table
920

User 1D Object

941 D942
Ug1g 0615
Uug1e 0489
U71¢ 0615

User Subscription
Table 840

iD 951 a52 Date 953
N E
E69 4:12 PM
£90 « « 1 8.12-2010
) Post Tabie 950
User Event
D981 1D 962
Ug1g E37
U819 Ean
U719 E37

News Feed Table
980

FIGURE 94

U.S. Patent Jan. 19, 2016 Sheet 11 of 22 US 9,241,017 B2

(800

901 Receive one or more properties of
Y an object stored in the database
system

a02 Reoceive one or more crileria about
™ which users are to automatically
follow the object

903 Determine whether the one or
\ more properties of the object
satisfy the one or more criteria for
a first user

|

804 ~— if the criteria are satisfied, the
object is associated with the first
user

FIGURE 9B

U.S. Patent Jan. 19, 2016

1020 ——

1030
N

Sheet 12 of 22

Receive data indicative of an
avent

Determine whether the event is
being tracked for inclusion into
feed tables

i

Write event o an event history
table

£

1040
\

Update field
change table

l

US 9,241,017 B2

Update post
table

/ 1050

3

¥

Receive a comment for an event
and add to a comment table

FIGURE 10

U.S. Patent Jan. 19, 2016 Sheet 13 of 22

1110 —] Receive a query for an events
history table

1120 ™4 Check io determine if the user
can view the record feed

1130
\\ Check field level security table o
determine whether the user can
see particular fields

1140
\\ Display feed items to which the
user has access

FIGURE 11

US 9,241,017 B2

U.S. Patent Jan. 19, 2016 Sheet 14 of 22

US 9,241,017 B2
1210 Receive a query from a second
¥ user for an events history fable — 1200
to see a first user's profile feed

‘

Perform security check whether
second user can see first user's
profile feed

'

Perform a security
check on specific feed
Hems

'

Retrieve a predetermined
number of matching entries from
the event history table

l

1932 Organize the record identifiers by type and
™ check whether the second can see the
racord types

i

1233 — If can see type, then proceed to check
access for specific records

i

1234 -~ Use field sharing rules to determine if
certain fields are not viewable

l

1235] Repeat steps 1231-1234 until a
stopping criteria is reached

FIGURE 12

1220

1230

1231

U.S. Patent Jan. 19, 2016 Sheet 15 of 22 US 9,241,017 B2

P 1300

1310 -] Receive data indicative of an
gvent

|

1320 e | Determine objacts
associated with the event

l

1330 ™ Determine users Ioiiowing the
even

i

Write followers of the event along
with an event identifier {o a news
feed table

|

1380 -~ | Receive a request for a
news feed from a user

|

Access news feed table and other
tables to generate feed items for
display

1340]

1360

FIGURE 13

U.S. Patent Jan. 19, 2016 Sheet 16 of 22 US 9,241,017 B2

1400
g

Receive one or more criteria
specifying which feed items are to be
displayed 1o a first user

1420 - ldentify feed items of one or more
selected chiects that match the criteria

¥

Display the feed items that
1430 1 match the criteria to the first user
in the custom feed

FIGURE 14

U.S. Patent Jan. 19, 2016 Sheet 17 of 22 US 9,241,017 B2

1500
f,f“‘

Computer implemented method for interacting with components across
different domains in a single user interface in an online social network

/fw’i 504
Provide data to generate a user interface with a first component and a
second componeant, where the first component exposeas content from a first
database system at a first network domain, and the second component
exposes content from a second database system at a second network

domain
1508
W [/ﬂ.
Receive, at the computing devics, a first interaction with the first
componeant
1512
4 f/N

Provide a reference in the second component in the user interface, where
the reference includes information related to the first interaction with the first
component

1516
: o

Receive, at the computing device, a second interaction with the second
component regarding the reference

FIGURE 15

U.S. Patent Jan. 19, 2016 Sheet 18 of 22

US 9,241,017 B2

/,A 600

C

Computer implemented method for interacting with componentis across
different domaing in a single user intarface in an onling social network

{f*'i 604

Provide data to gensrate a user interface with a first component and a second

component, where the first component exposes content from a first database

systern at a first network domain, and the second component exposes content
from a second database system at a second network domain

1 i,«w‘i 508
Raceive, at the computing device, a first interaction with the first
component
! f-m’i 612

identify a data source stored in the first databass system and associated with
a first identifier

! ‘,»-1616

Retrieve the data source associated with the first identifier for storage at the
computing device with a second identifier

, 1/’“1620

Provide a referance in the second component in the user interface, where the
reference includes information related 1o the first interaction with the first
component

i Af“’f 624

Receive, at the computing device, a second interaction with the second
componeant ragarding the reference

‘,»--1 628

¥

Update the second database system with the second interaction

i f‘”1 6532

Provide a feed item associatad with the updats for inclusion in an information
feed in the user interface

FIGURE 16

U.S. Patent Jan. 19, 2016 Sheet 19 of 22 US 9,241,017 B2

FIGURE 17

US 9,241,017 B2

Sheet 20 of 22

Jan. 19, 2016

U.S. Patent

8L FHNOIA

QIO

SausgEm

Ziel

& UHA BN
Y NOA aiMel yogm
MOUY BLU 1D} NOA ueD

‘sauieh
DO JO BUD DEORIMOD
o3 BuAn usym pey 1ok .IJ
wis|goid 2 JNOYGE MoUY
sn Buma) oy sueul 310)

aLBe B

[Lils iR eile]

D1 pewa ue uss sosn umupy

& g mog dgueg G081 o

sfews esol pead

s weny B

TASIOISND Gky) Of fiBlus Ue

spgjdwa) B 10395

g FE

l\\\& TS AEES RS EISg
Z08%

@ = 5

B 00 fGUoisnD Ui

8084 1\@@@ L0000 ¢

EE 2y

Oy asum oses
winpaly Aioud

MON STIEIS

/

Unjausesd oN

suey BUIpBOIUMOC] SIGNoI L

21217355 (08}
BIPOY PGS
soury uopr
ABIOIEND

260100000 W z0010000 43)

0084 —

US 9,241,017 B2

Sheet 21 of 22

Jan. 19, 2016

U.S. Patent

6L HHNOI-A

Lanieno ZiXA oul ssop AU

et yoeRy %

LLOIBND 8L O] RS UB 2JUAN w

0261

B58G 0} yoRYY

IBLUCESND 0} e
EOYING S

2064 l\\\&

1senbes Joddns sniiD Mo A

%Y
w?
[GEIBHE]

D0 PRy

m.b.m <Gy st poddns: wod spup@ioddns, m Wod-

YDIBREG BOLlY POUURADY

=

@ = 5

aepdwia | e jo8|eg

seue -]

GIESIT Be0T; 1OMBDY (B0 189 DO JOWIniRnTy jelg

m@m“\zxmmwwammm

aepn)

ISS0Y MUY
Wnipay

PASOID

by ssen
SUMQ 358D
Agioiad
snleig

p——
NCA URD TREY BU) 0] 20D YoNo) O} JNDUHD S D @

3 SINS 10U Wi poy Alea ‘Ksa Bumsl siu wcm ZLX A MBU AL DY
LY A MBU Al M angs) mcmmmrm,hm}mu

s aouepind epiaoud o1 oW 1oRUNS asesd

LG DUORED) (Ul
AR ARSI R

D BPISINO B S {BUIDY B U0y
ISUESABY | 'SNLUIN) Ol H Snyesy 105G
ABUCIS RS

4

0064 E..\\\

US 9,241,017 B2

Sheet 22 of 22

Jan. 19, 2016

U.S. Patent

02 J¥N92id

eirl

T

(974

4
pRIE

- - BMWDD

_m>.mmm>>\
6€8 iB188Y | BUIoH — SolWARD @

aoiig BETITYY NP0

DZ0F—"" 1240 1598 IxoN [}

ners ST LT BT StREsTY

de os|R GYA Q) U0 S0DIA Buisg a0 s pesupany
LOKHA AL U DOPIA (I BUL XY § OB MOH

e

[£1

19 AL BUI Te) BN ayewW o) Mejae] 301a) MRS

papy 01 By wioy Aioud paBueys fsswey eby

o 00g ..\\%

2 8le(] 1304 AG UG « saqepdn iy

eanpeey {1} OBpIA TeUISIY WIAYNEA

B4} BUISh PUBLISE-UC-SPIA XI1JMAN $99508 OF FACH =

:mmumhmcwm IXeu pue A3 eiaplg At dngoas o djaH

8LOZ "

LOIEES SIONNY DEOUBADY

mx umn.co_um‘nwcm?uxmc.vam{\ |~elaeig-Au-dmaes-oi-dis m

bl Qma\\ ol oeny f§

(=) B |[=]

s394y poysedbng

JBLUOISNG BYY O

24 G S

agdie] e 10ses

\quu -
62LXH Q21 .99

13

BIABIG A} AL UlA Bseed aw o)

“
A B sod g srump sBueyln % pewy §

2008 HAtLRR . d

s g00¢ -

puooenoselesdieswsinl £y de-canios £y BT

pori-les (986) M owoid uliy #
g3 asiun euey

sy ases)d 13188

& JdOPEa ESBAl

0007 —

+ 1 SOrLO000 B o 4 yaop Ay

youzes

US 9,241,017 B2

1
SYSTEMS AND METHODS FOR CROSS
DOMAIN SERVICE COMPONENT
INTERACTION

PRIORITY AND RELATED APPLICATION DATA

This patent document claims priority to and commonly
assigned U.S. Provisional Patent Application No. 61/667,804
titled “System and Method for Cross Domain Service Com-
ponent Interaction” by Beechuk, filed on Jul. 3, 2012, which
is hereby incorporated by reference in its entirety and for all
purposes.

COPYRIGHT NOTICE

A portion of the disclosure of this patent document con-
tains material, which is subject to copyright protection. The
copyright owner has no objection to the facsimile reproduc-
tion by anyone of the patent document or the patent disclo-
sure, as it appears in the Patent and Trademark Office patent
file or records, but otherwise reserves all copyright rights
whatsoever

TECHNICAL FIELD

This patent document relates generally to providing on-
demand services in an online social network using a database
system and, more specifically, to techniques for communicat-
ing with components across different domains from a user
interface in an online social network.

BACKGROUND

“Cloud computing” services provide shared resources,
software, and information to computers and other devices
upon request. In cloud computing environments, software can
be accessible over the Internet rather than installed locally on
in-house computer systems. Cloud computing typically
involves over-the-Internet provision of dynamically scalable
and often virtualized resources. Technological details can be
abstracted from the users, who no longer have need for exper-
tise in, or control over, the technology infrastructure “in the
cloud” that supports them.

Database resources can be provided in a cloud computing
context. However, using conventional database management
techniques, it is difficult to know about the activity of other
users of a database system in the cloud or other network. For
example, the actions of a particular user, such as a salesper-
son, on a database resource may be important to the user’s
boss. The user can create a report about what the user has done
and send it to the boss, but such reports may be inefficient, not
timely, and incomplete. Also, it may be difficult to identify
other users who might benefit from the information in the
report.

BRIEF DESCRIPTION OF THE DRAWINGS

The included drawings are for illustrative purposes and
serve only to provide examples of possible structures and
operations for the disclosed inventive systems, apparatus, and
methods for interacting with one or more records from a
single user interface in an online social network. These draw-
ings in no way limit any changes in form and detail that may
be made by one skilled in the art without departing from the
spirit and scope of the disclosed implementations.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 1A shows a block diagram of an example of an envi-
ronment 10 in which an on-demand database service can be
used in accordance with some implementations.

FIG. 1B shows a block diagram of an example of some
implementations of elements of FIG. 1A and various possible
interconnections between these elements.

FIG. 2A shows a system diagram illustrating an example of
architectural components of an on-demand database service
environment 200 according to some implementations.

FIG. 2B shows a system diagram further illustrating an
example of architectural components of an on-demand data-
base service environment according to some implementa-
tions.

FIG. 3 shows a flowchart of an example of a method 300 for
tracking updates to a record stored in a database system,
performed in accordance with some implementations.

FIG. 4 shows a block diagram of an example of compo-
nents of a database system configuration 400 performing a
method for tracking an update to a record according to some
implementations.

FIG. 5 shows a flowchart of an example of a method 500 for
tracking actions of a user of a database system, performed in
accordance with some implementations.

FIG. 6 shows a flowchart of an example of a method 600 for
creating a news feed from messages created by a user about a
record or another user, performed in accordance with some
implementations.

FIG. 7 shows an example of a group feed on a group page
according to some implementations.

FIG. 8 shows an example of a record feed containing a feed
tracked update, post, and comments according to some imple-
mentations.

FIG. 9A shows an example of a plurality of tables that may
be used in tracking events and creating feeds according to
some implementations.

FIG. 9B shows a flowchart of an example of a method 900
for automatically subscribing a user to an object in a database
system, performed in accordance with some implementa-
tions.

FIG. 10 shows a flowchart of an example of a method 1000
for saving information to feed tracking tables, performed in
accordance with some implementations.

FIG. 11 shows a flowchart of an example of a method 1100
for reading a feed item as part of generating a feed for display,
performed in accordance with some implementations.

FIG. 12 shows a flowchart of an example of a method 1200
for reading a feed item of a profile feed for display, performed
in accordance with some implementations.

FIG. 13 shows a flowchart of an example of a method 1300
of storing event information for efficient generation of feed
items to display in a feed, performed in accordance with some
implementations.

FIG. 14 shows a flowchart of an example of a method 1400
for creating a custom feed for users of a database system using
filtering criteria, performed in accordance with some imple-
mentations.

FIG. 15 shows a flowchart of an example of a computer
implemented method 1500 for interacting with components
across different domains in a single user interface in an online
social network, performed in accordance with some imple-
mentations.

FIG. 16 shows a flowchart of an example of a computer
implemented method 1600 for interacting with components
across different domains in a single user interface in an online
social network, performed in accordance with some other
implementations.

US 9,241,017 B2

3

FIG. 17 shows a diagram of an example of a client device
displaying a user interface with components in communica-
tion with database systems across domains, according to
some implementations.

FIG. 18 shows an example of a user interface with a pub-
lisher and an information feed, according to some implemen-
tations.

FIG. 19 shows an example of a user interface with a pub-
lisher and a knowledge articles component, according to
some implementations.

FIG. 20 shows an example of a user interface with a pub-
lisher having an article attached from the knowledge articles
component, according to some implementations.

DETAILED DESCRIPTION

Examples of systems, apparatus, and methods according to
the disclosed implementations are described in this section.
These examples are being provided solely to add context and
aid in the understanding of the disclosed implementations. It
will thus be apparent to one skilled in the art that implemen-
tations may be practiced without some or all of these specific
details. In other instances, certain process/method operations,
also referred to herein as “blocks,” have not been described in
detail in order to avoid unnecessarily obscuring implementa-
tions. Other applications are possible, such that the following
examples should not be taken as definitive or limiting either in
scope or setting.

In the following detailed description, references are made
to the accompanying drawings, which form a part of the
description and in which are shown, by way of illustration,
specific implementations. Although these implementations
are described in sufficient detail to enable one skilled in the art
to practice the disclosed implementations, it is understood
that these examples are not limiting, such that other imple-
mentations may be used and changes may be made without
departing from their spirit and scope. For example, the blocks
of methods shown and described herein are not necessarily
performed in the order indicated. It should also be understood
that the methods may include more or fewer blocks than are
indicated. In some implementations, blocks described herein
as separate blocks may be combined. Conversely, what may
be described herein as a single block may be implemented in
multiple blocks.

Various implementations described or referenced herein
are directed to different methods, apparatus, systems, and
computer-readable storage media for interacting with com-
ponents across different domains in a single user interface in
an online social network, also referred to herein as a social
networking system. One example of an online social network
is Chatter®, provided by salesforce.com, inc. of San Fran-
cisco, Calif. Online social networks are increasingly becom-
ing acommon way to facilitate communication among people
and groups of people, any of whom can be recognized as users
of a social networking system. Some online social networks
can be implemented in various settings, including organiza-
tions, e.g., enterprises such as companies or business partner-
ships, academic institutions, or groups within such an orga-
nization. For instance, Chatter® can be used by employee
users in a division of a business organization to share data,
communicate, and collaborate with each other for various
purposes.

In some online social networks, users can access one or
more information feeds, which include information updates
presented as items or entries in the feed. Such a feed item can
include a single information update or a collection of indi-
vidual information updates. A feed item can include various

10

15

20

25

30

35

40

45

55

60

4

types of data including character-based data, audio data,
image data and/or video data. An information feed can be
displayed in a graphical user interface (GUI) on a display
device such as the display of a computing device as described
below. The information updates can include various social
network data from various sources and can be stored in an
on-demand database service environment. In some imple-
mentations, the disclosed methods, apparatus, systems, and
computer-readable storage media may be configured or
designed for use in a multi-tenant database environment.

In some implementations, an online social network may
allow a user to follow data objects in the form of records such
as cases, accounts, or opportunities, in addition to following
individual users and groups of users. The “following” of a
record stored in a database, as described in greater detail
below, allows a user to track the progress of that record.
Updates to the record, also referred to herein as changes to the
record, are one type of information update that can occur and
be noted on an information feed such as a record feed or a
news feed of a user subscribed to the record. Examples of
record updates include field changes in the record, updates to
the status of a record, as well as the creation of the record
itself. Some records are publicly accessible, such that any
user can follow the record, while other records are private, for
which appropriate security clearance/permissions are a pre-
requisite to a user following the record.

Information updates can include various types of updates,
which may or may not be linked with a particular record. For
example, information updates can be user-submitted mes-
sages or can otherwise be generated in response to user
actions or in response to events. Examples of messages
include: posts, comments, indications of a user’s personal
preferences such as “likes™ and “dislikes”, updates to a user’s
status, uploaded files, and hyperlinks to social network data or
other network data such as various documents and/or web
pages on the Internet. Posts can include alpha-numeric or
other character-based user inputs such as words, phrases,
statements, questions, emotional expressions, and/or sym-
bols. Comments generally refer to responses to posts, such as
words, phrases, statements, answers, questions, and reaction-
ary emotional expressions and/or symbols. Multimedia data
can be included in, linked with, or attached to a post or
comment. For example, a post can include textual statements
in combination with a JPEG image or animated image. A like
or dislike can be submitted in response to a particular post or
comment. Examples of uploaded files include presentations,
documents, multimedia files, and the like.

Users can follow a record by subscribing to the record, as
mentioned above. Users can also follow other entities such as
other types of data objects, other users, and groups of users.
Feed tracked updates regarding such entities are one type of
information update that can be received and included in the
user’s news feed. Any number of users can follow a particular
entity and thus view information updates pertaining to that
entity on the users’ respective news feeds. In some social
networks, users may follow each other by establishing con-
nections with each other, sometimes referred to as “friend-
ing” one another. By establishing such a connection, one user
may be able to see information generated by, generated about,
or otherwise associated with another user. For instance, a first
user may be able to see information posted by a second user
to the second user’s personal social network page. One imple-
mentation of such a personal social network page is a user’s
profile page, for example, in the form of a web page repre-
senting the user’s profile. In one example, when the first user
is following the second user, the first user’s news feed can
receive a post from the second user submitted to the second

US 9,241,017 B2

5

user’s profile feed, also referred to herein as the user’s “wall,”
which is one example of an information feed displayed on the
user’s profile page.

In some implementations, an information feed may be
specific to a group of users of an online social network. For
instance, a group of users may publish a news feed. Members
of the group may view and post to this group feed in accor-
dance with a permissions configuration for the feed and the
group. Information updates in a group context can also
include changes to group status information.

In some implementations, when data such as posts or com-
ments input from one or more users are submitted to an
information feed for a particular user, group, object, or other
construct within an online social network, an email notifica-
tion or other type of network communication may be trans-
mitted to all users following the user, group, or object in
addition to the inclusion of the data as a feed item in one or
more feeds, such as a user’s profile feed, a news feed, or a
record feed. In some online social networks, the occurrence of
such a notification is limited to the first instance of a published
input, which may form part of a larger conversation. For
instance, a notification may be transmitted for an initial post,
but not for comments on the post. In some other implemen-
tations, a separate notification is transmitted for each such
information update.

Some implementations of the disclosed systems, appara-
tus, methods, and computer readable storage media are con-
figured to interact with components across different domains
in a user interface in an online social network. One compo-
nent can load an application from a data service provider
hosted on a first network domain, and another component can
load another application hosted on a second network domain.
In some implementations, the second network domain may be
controlled by an entity other than the data service provider.
Thus, each component can expose content in the same user
interface from different database systems. A user can interact
with the components such that the components hosted on
different database systems can communicate and interact
with each other through an application programming inter-
face (API).

As more and more users and organizations move toward
more collaborative sharing models to communicate and con-
duct business, there is a desire to better expose, enhance, and
utilize information. Conventionally, accessing information
and interacting with information in an online social network
can involve navigating and switching among several different
applications and interfaces. This can be cumbersome, time-
consuming, and unproductive.

Some of the implementations described herein are directed
to providing a user interface with components that can
directly communicate with each other in an integrated fashion
even when the components expose content hosted on separate
database systems in an online social network. Rather than
initiating an additional user interface or application, or
refreshing the browser page, interactions between the com-
ponents can occur seamlessly in the existing user interface.

The disclosed implementations provide data to generate a
user interface having a first component and a second compo-
nent, where the first component exposes content from a first
database system at a first network domain and the second
component exposes content from a second database system at
a second network domain. In some implementations, the first
database system may be outside a multi-tenant database envi-
ronment and the second database system may be within the
multi-tenant database environment. A first interaction with
the first component is received, which is then followed by a
reference being provided in the second component. The ref-

10

20

25

40

45

55

6

erence includes information related to the first interaction.
Additionally, a second interaction with the second compo-
nent is received regarding the reference. In some implemen-
tations, a data source stored in the first database system and
associated with a first identifier is identified. The data source
can be retrieved for storage at a server having a second iden-
tifier at the server. The reference can include instructions for
retrieving the data source having the second identifier at the
server. In some implementations, a network transmission can
be sent to one or more entities including the data source
associated with the second identifier.

In an illustrative example, a company employs several
support agents who field a tremendous volume of inquiries
from customers each day. The company desires to customize
a case feed page so that from the case feed page, each support
agent can access a database of knowledge articles (KAs) to
resolve different customer issues. Rather than opening a sepa-
rate window or application, the database of KAs can be
exposed in the same interface as the case feed page. For
example, the case feed can be presented in a primary or main
component of the user interface, while a list of some KAs can
be presented in a secondary or sidebar component of that user
interface. The two components can communicate with each
other seamlessly. Thus, communications across domains may
be facilitated without requiring the additional latency or com-
putation burden that would exist if the interactions were
accomplished using a proxy or other type of server commu-
nication. In addition, a support agent can utilize a search
query from the case feed page, which can include a search-
as-you-type functionality, to dynamically show suggested
articles from the exposed database of KAs. In some imple-
mentations, a support agent can select one or more KAs from
the exposed database of KAs and attach them directly to a
publisher, such as an email publisher, in the case feed page. In
some implementations, a support agent can access other data-
bases besides the database of KAs.

These and other implementations may be embodied in
various types of hardware, software, firmware, and combina-
tions thereof. For example, some techniques disclosed herein
may be implemented, at least in part, by computer-readable
media that include program instructions, state information,
etc., for performing various services and operations described
herein. Examples of program instructions include both
machine code, such as produced by a compiler, and files
containing higher-level code that may be executed by a com-
puting device such as a server or other data processing appa-
ratus using an interpreter. Examples of computer-readable
media include, but are not limited to, magnetic media such as
hard disks, floppy disks, and magnetic tape; optical media
such as CD-ROM disks; magneto-optical media; and hard-
ware devices that are specially configured to store program
instructions, such as read-only memory (“ROM”) devices
and random access memory (“RAM”) devices. These and
other features of the disclosed implementations will be
described in more detail below with reference to the associ-
ated drawings.

The term “multi-tenant database system” can refer to those
systems in which various elements of hardware and software
of a database system may be shared by one or more custom-
ers. For example, a given application server may simulta-
neously process requests for a great number of customers, and
a given database table may store rows of data such as feed
items for a potentially much greater number of customers.
The term “query plan” generally refers to one or more opera-
tions used to access information in a database system.

A “user profile” or “user’s profile” is generally configured
to store and maintain data about a given user of the database

US 9,241,017 B2

7

system. The data can include general information, such as
name, title, phone number, a photo, a biographical summary,
and a status, e.g., text describing what the user is currently
doing. As mentioned below, the data can include messages
created by other users. Where there are multiple tenants, a
user is typically associated with a particular tenant. For
example, a user could be a salesperson of a company, which
is a tenant of the database system that provides a database
service.

The term “record” generally refers to a data entity, such as
an instance of a data object created by a user of the database
service, for example, about a particular (actual or potential)
business relationship or project. The data object can have a
data structure defined by the database service (a standard
object) or defined by a user (custom object). For example, a
record can be for a business partner or potential business
partner (e.g., a client, vendor, distributor, etc.) of the user, and
can include information describing an entire company, sub-
sidiaries, or contacts at the company. As another example, a
record can be a project that the user is working on, such as an
opportunity (e.g., a possible sale) with an existing partner, or
a project that the user is trying to get. In one implementation
of'a multi-tenant database system, each record for the tenants
has a unique identifier stored in a common table. A record has
data fields that are defined by the structure of the object (e.g.,
fields of certain data types and purposes). A record can also
have custom fields defined by a user. A field can be another
record or include links thereto, thereby providing a parent-
child relationship between the records.

The terms “information feed” and “feed” are used inter-
changeably herein and generally refer to a combination (e.g.,
a list) of feed items or entries with various types of informa-
tion and data. Such feed items can be stored and maintained in
one or more database tables, e.g., as rows in the table(s), that
can be accessed to retrieve relevant information to be pre-
sented as part of a displayed feed. The term “feed item™ (or
feed element) refers to an item of information, which can be
presented in the feed such as a post submitted by a user. Feed
items of information about a user can be presented in a user’s
profile feed of the database, while feed items of information
about a record can be presented in a record feed in the data-
base, by way of example. A profile feed and a record feed are
examples of different information feeds. A second user fol-
lowing a first user and a record can receive the feed items
associated with the first user and the record for display in the
second user’s news feed, which is another type of information
feed. In some implementations, the feed items from any num-
ber of followed users and records can be combined into a
single information feed of a particular user.

As examples, a feed item can be a message, such as a
user-generated post of text data, and a feed tracked update to
a record or profile, such as a change to a field of the record.
Feed tracked updates are described in greater detail below. A
feed can be a combination of messages and feed tracked
updates. Messages include text created by a user, and may
include other data as well. Examples of messages include
posts, user status updates, and comments. Messages can be
created for a user’s profile or for a record. Posts can be created
by various users, potentially any user, although some restric-
tions can be applied. As an example, posts can be made to a
wall section of a user’s profile page (which can include a
number of recent posts) or a section of a record that includes
multiple posts. The posts can be organized in chronological
order when displayed in a graphical user interface (GUI), for
instance, on the user’s profile page, as part of the user’s profile
feed. In contrast to a post, a user status update changes a status
of'a user and can be made by that user or an administrator. A

10

15

20

25

30

35

40

45

50

55

60

65

8

record can also have a status, the update of which can be
provided by an owner of the record or other users having
suitable write access permissions to the record. The owner
can be a single user, multiple users, or a group. In one imple-
mentation, there is only one status for a record.

In some implementations, a comment can be made on any
feed item. In some implementations, comments are organized
as alistexplicitly tied to a particular feed tracked update, post,
or status update. In some implementations, comments may
not be listed in the first layer (in a hierarchal sense) of feed
items, but listed as a second layer branching from a particular
first layer feed item.

A “feed tracked update,” also referred to herein as a “feed
update,” is one type of information update and generally
refers to data representing an event. A feed tracked update can
include text generated by the database system in response to
the event, to be provided as one or more feed items for
possible inclusion in one or more feeds. In one implementa-
tion, the data can initially be stored, and then the database
system can later use the data to create text for describing the
event. Both the data and/or the text can be a feed tracked
update, as used herein. In various implementations, an event
can be an update of a record and/or can be triggered by a
specific action by auser. Which actions trigger an event can be
configurable. Which events have feed tracked updates created
and which feed updates are sent to which users can also be
configurable. Messages and feed updates can be stored as a
field or child object of the record. For example, the feed can be
stored as a child object of the record.

A “group” is generally a collection of users. In some imple-
mentations, the group may be defined as users with a same or
similar attribute, or by membership. In some implementa-
tions, a “group feed”, also referred to herein as a “group news
feed”, includes one or more feed items about any user in the
group. In some implementations, the group feed also includes
information updates and other feed items that are about the
group as a whole, the group’s purpose, the group’s descrip-
tion, and group records and other objects stored in association
with the group. Threads of information updates including
group record updates and messages, such as posts, comments,
likes, etc., can define group conversations and change over
time.

An “entity feed” or “record feed” generally refers to a feed
of'feed items about a particular record in the database, such as
feed tracked updates about changes to the record and posts
made by users about the record. An entity feed can be com-
posed of any type of feed item. Such a feed can be displayed
on a page such as a web page associated with the record, e.g.,
ahome page of the record. As used herein, a “profile feed” or
“user’s profile feed” is a feed of feed items about a particular
user. In one example, the feed items for a profile feed include
posts and comments that other users make about or send to the
particular user, and status updates made by the particular user.
Such a profile feed can be displayed on a page associated with
the particular user. In another example, feed items in a profile
feed could include posts made by the particular user and feed
tracked updates initiated based on actions of the particular
user.

1. General Overview

Systems, apparatus, and methods are provided for imple-
menting enterprise level social and business information net-
working. Such implementations can provide more efficient
use of a database system. For instance, a user of a database
system may not easily know when important information in
the database has changed, e.g., about a project or client.
Implementations can provide feed tracked updates about such
changes and other events, thereby keeping users informed.

US 9,241,017 B2

9

By way of example, a user can update a record, e.g., an
opportunity such as a possible sale of 1000 computers. Once
the record update has been made, a feed tracked update about
the record update can then automatically be provided, e.g., in
afeed, to anyone subscribing to the opportunity or to the user.
Thus, the user does not need to contact a manager regarding
the change in the opportunity, since the feed tracked update
about the update is sent via a feed right to the manager’s feed
page or other page.

Next, mechanisms and methods for providing systems
implementing enterprise level social and business informa-
tion networking will be described with reference to several
implementations. First, an overview of an example of a data-
base system is described, and then examples of tracking
events for a record, actions of a user, and messages about a
user or record are described. Various implementations about
the data structure of feeds, customizing feeds, user selection
of records and users to follow, generating feeds, and display-
ing feeds are also described.

II. System Overview

FIG. 1A shows a block diagram of an example of an envi-
ronment 10 in which an on-demand database service can be
used in accordance with some implementations. Environment
10 may include user systems 12, network 14, database system
16, processor system 17, application platform 18, network
interface 20, tenant data storage 22, system data storage 24,
program code 26, and process space 28. In other implemen-
tations, environment 10 may not have all of these components
and/or may have other components instead of, or in addition
to, those listed above.

Environment 10 is an environment in which an on-demand
database service exists. User system 12 may be implemented
as any computing device(s) or other data processing appara-
tus such as a machine or system that is used by a user to access
a database system 16. For example, any of user systems 12
can be a handheld computing device, a mobile phone, a laptop
computer, a work station, and/or a network of such computing
devices. As illustrated in FIG. 1A (and in more detail in FIG.
1B) user systems 12 might interact via a network 14 with an
on-demand database service, which is implemented in the
example of FIG. 1A as database system 16.

An on-demand database service, implemented using sys-
tem 16 by way of example, is a service that is made available
to outside users, who do not need to necessarily be concerned
with building and/or maintaining the database system.
Instead, the database system may be available for their use
when the users need the database system, i.e., on the demand
of the users. Some on-demand database services may store
information from one or more tenants into tables of a common
database image to form a multi-tenant database system
(MTS). A database image may include one or more database
objects. A relational database management system (RDBMS)
or the equivalent may execute storage and retrieval of infor-
mation against the database object(s). Application platform
18 may be a framework that allows the applications of system
16 to run, such as the hardware and/or software, e.g., the
operating system. In some implementations, application plat-
form 18 enables creation, managing and executing one or
more applications developed by the provider of the on-de-
mand database service, users accessing the on-demand data-
base service via user systems 12, or third party application
developers accessing the on-demand database service via
user systems 12.

The users of user systems 12 may differ in their respective
capacities, and the capacity of a particular user system 12
might be entirely determined by permissions (permission
levels) for the current user. For example, where a salesperson

10

15

20

25

30

35

40

45

50

55

60

65

10

is using a particular user system 12 to interact with system 16,
that user system has the capacities allotted to that salesperson.
However, while an administrator is using that user system to
interact with system 16, that user system has the capacities
allotted to that administrator. In systems with a hierarchical
role model, users at one permission level may have access to
applications, data, and database information accessible by a
lower permission level user, but may not have access to cer-
tain applications, database information, and data accessible
by a user at a higher permission level. Thus, different users
will have different capabilities with regard to accessing and
modifying application and database information, depending
on a user’s security or permission level, also called authori-
zation.

Network 14 is any network or combination of networks of
devices that communicate with one another. For example,
network 14 can be any one or any combination of a LAN
(local area network), WAN (wide area network), telephone
network, wireless network, point-to-point network, star net-
work, token ring network, hub network, or other appropriate
configuration. Network 14 can include a TCP/IP (Transfer
Control Protocol and Internet Protocol) network, such as the
global internetwork of networks often referred to as the
“Internet” with a capital “I.” The Internet will be used in many
of'the examples herein. However, it should be understood that
the networks that the present implementations might use are
not so limited, although TCP/IP is a frequently implemented
protocol.

User systems 12 might communicate with system 16 using
TCP/IP and, at a higher network level, use other common
Internet protocols to communicate, such as HI'TP, FTP, AFS,
WAP, etc. In an example where HTTP is used, user system 12
might include an HTTP client commonly referred to as a
“browser” for sending and receiving HT'TP signals to and
from an HTTP server at system 16. Such an HTTP server
might be implemented as the sole network interface 20
between system 16 and network 14, but other techniques
might be used as well or instead. In some implementations,
the network interface 20 between system 16 and network 14
includes load sharing functionality, such as round-robin
HTTP request distributors to balance loads and distribute
incoming HTTP requests evenly over a plurality of servers. At
least for users accessing system 16, each of the plurality of
servers has access to the MTS' data; however, other alterna-
tive configurations may be used instead.

In one implementation, system 16, shown in FIG. 1A,
implements a web-based customer relationship management
(CRM) system. For example, in one implementation, system
16 includes application servers configured to implement and
execute CRM software applications as well as provide related
data, code, forms, web pages and other information to and
from user systems 12 and to store to, and retrieve from, a
database system related data, objects, and Webpage content.
With a multi-tenant system, data for multiple tenants may be
stored in the same physical database object in tenant data
storage 22, however, tenant data typically is arranged in the
storage medium(s) of tenant data storage 22 so that data of
one tenant is kept logically separate from that of other tenants
so that one tenant does not have access to another tenant’s
data, unless such data is expressly shared. In certain imple-
mentations, system 16 implements applications other than, or
in addition to, a CRM application. For example, system 16
may provide tenant access to multiple hosted (standard and
custom) applications, including a CRM application. User (or
third party developer) applications, which may or may not
include CRM, may be supported by the application platform
18, which manages creation, storage of the applications into

US 9,241,017 B2

11

one or more database objects and executing of the applica-
tions in a virtual machine in the process space of the system
16.

One arrangement for elements of system 16 is shown in
FIGS. 1A and 1B, including a network interface 20, applica-
tion platform 18, tenant data storage 22 for tenant data 23,
system data storage 24 for system data 25 accessible to sys-
tem 16 and possibly multiple tenants, program code 26 for
implementing various functions of system 16, and a process
space 28 for executing MTS system processes and tenant-
specific processes, such as running applications as part of an
application hosting service. Additional processes that may
execute on system 16 include database indexing processes.

Several elements in the system shown in FIG. 1A include
conventional, well-known elements that are explained only
briefly here. For example, each user system 12 could include
a desktop personal computer, workstation, laptop, PDA, cell
phone, or any wireless access protocol (WAP) enabled device
or any other computing device capable of interfacing directly
or indirectly to the Internet or other network connection. The
term “computing device” is also referred to herein simply as
a “computer”. User system 12 typically runs an HTTP client,
e.g., a browsing program, such as Microsoft’s Internet
Explorer browser, Netscape’s Navigator browser, Opera’s
browser, or a WAP-enabled browser in the case of a cell
phone, PDA or other wireless device, or the like, allowing a
user (e.g., subscriber of the multi-tenant database system) of
user system 12 to access, process and view information, pages
and applications available to it from system 16 over network
14. Each user system 12 also typically includes one or more
user input devices, such as a keyboard, a mouse, trackball,
touch pad, touch screen, pen or the like, for interacting with a
graphical user interface (GUI) provided by the browser on a
display (e.g., a monitor screen, LCD display, etc.) of the
computing device in conjunction with pages, forms, applica-
tions and other information provided by system 16 or other
systems or servers. For example, the user interface device can
be used to access data and applications hosted by system 16,
and to perform searches on stored data, and otherwise allow a
user to interact with various GUI pages that may be presented
to a user. As discussed above, implementations are suitable
for use with the Internet, although other networks can be used
instead of or in addition to the Internet, such as an intranet, an
extranet, a virtual private network (VPN), a non-TCP/IP
based network, any LAN or WAN or the like.

According to one implementation, each user system 12 and
all of its components are operator configurable using appli-
cations, such as a browser, including computer code run using
a central processing unit such as an Intel Pentium® processor
or the like. Similarly, system 16 (and additional instances of
an MTS, where more than one is present) and all of its com-
ponents might be operator configurable using application(s)
including computer code to run using processor system 17,
which may be implemented to include a central processing
unit, which may include an Intel Pentium® processor or the
like, and/or multiple processor units. Non-transitory com-
puter-readable media can have instructions stored thereon/in,
that can be executed by or used to program a computing
device to perform any of the methods of the implementations
described herein. Computer program code 26 implementing
instructions for operating and configuring system 16 to inter-
communicate and to process web pages, applications and
other data and media content as described herein is preferably
downloadable and stored on a hard disk, but the entire pro-
gram code, or portions thereof, may also be stored in any
other volatile or non-volatile memory medium or device as is
well known, such as a ROM or RAM, or provided on any

20

25

30

40

45

55

12

media capable of storing program code, such as any type of
rotating media including floppy disks, optical discs, digital
versatile disk (DVD), compact disk (CD), microdrive, and
magneto-optical disks, and magnetic or optical cards, nano-
systems (including molecular memory ICs), or any other type
of computer-readable medium or device suitable for storing
instructions and/or data. Additionally, the entire program
code, or portions thereof, may be transmitted and downloaded
from a software source over a transmission medium, e.g., over
the Internet, or from another server, as is well known, or
transmitted over any other conventional network connection
as is well known (e.g., extranet, VPN, LAN, etc.) using any
communication medium and protocols (e.g., TCP/IP, HTTP,
HTTPS, Ethernet, etc.) as are well known. It will also be
appreciated that computer code for the disclosed implemen-
tations can be realized in any programming language that can
be executed on a client system and/or server or server system
such as, for example, C, C++, HITML, any other markup
language, Java™, JavaScript, ActiveX, any other scripting
language, such as VBScript, and many other programming
languages as are well known may be used. (Java™ is a trade-
mark of Sun Microsystems, Inc.).

According to some implementations, each system 16 is
configured to provide web pages, forms, applications, data
and media content to user (client) systems 12 to support the
access by user systems 12 as tenants of system 16. As such,
system 16 provides security mechanisms to keep each ten-
ant’s data separate unless the data is shared. If more than one
MTS is used, they may be located in close proximity to one
another (e.g., in a server farm located in a single building or
campus), or they may be distributed at locations remote from
one another (e.g., one or more servers located in city A and
one or more servers located in city B). As used herein, each
MTS could include one or more logically and/or physically
connected servers distributed locally or across one or more
geographic locations. Additionally, the term “server” is
meant to refer to a computing device or system, including
processing hardware and process space(s), an associated stor-
age medium such as a memory device or database, and, in
some instances, a database application (e.g., OODBMS or
RDBMS) as is well known in the art. It should also be under-
stood that “server system” and “server” are often used inter-
changeably herein. Similarly, the database objects described
herein can be implemented as single databases, a distributed
database, a collection of distributed databases, a database
with redundant online or offline backups or other redundan-
cies, etc., and might include a distributed database or storage
network and associated processing intelligence.

FIG. 1B shows a block diagram of an example of some
implementations of elements of FIG. 1A and various possible
interconnections between these elements. That is, FIG. 1B
also illustrates environment 10. However, in FIG. 1B ele-
ments of system 16 and various interconnections in some
implementations are further illustrated. FIG. 1B shows that
user system 12 may include processor system 12A, memory
system 12B, input system 12C, and output system 12D. FIG.
1B shows network 14 and system 16. FIG. 1B also shows that
system 16 may include tenant data storage 22, tenant data 23,
system data storage 24, system data 25, User Interface (UI)
30, Application Program Interface (API) 32, PL/SOQL 34,
save routines 36, application setup mechanism 38, applica-
tions servers 1001-100N, system process space 102, tenant
process spaces 104, tenant management process space 110,
tenant storage space 112, user storage 114, and application
metadata 116. In other implementations, environment 10 may

US 9,241,017 B2

13

not have the same elements as those listed above and/or may
have other elements instead of, or in addition to, those listed
above.

User system 12, network 14, system 16, tenant data storage
22, and system data storage 24 were discussed above in FIG.
1A. Regarding user system 12, processor system 12A may be
any combination of one or more processors. Memory system
12B may be any combination of one or more memory devices,
short term, and/or long term memory. Input system 12C may
be any combination of input devices, such as one or more
keyboards, mice, trackballs, scanners, cameras, and/or inter-
faces to networks. Output system 12D may be any combina-
tion of output devices, such as one or more monitors, printers,
and/or interfaces to networks. As shown by FIG. 1B, system
16 may include a network interface 20 (of FIG. 1A) imple-
mented as a set of HTTP application servers 100, an applica-
tion platform 18, tenant data storage 22, and system data
storage 24. Also shown is system process space 102, includ-
ing individual tenant process spaces 104 and a tenant man-
agement process space 110. Each application server 100 may
be configured to communicate with tenant data storage 22 and
the tenant data 23 therein, and system data storage 24 and the
system data 25 therein to serve requests of user systems 12.
The tenant data 23 might be divided into individual tenant
storage spaces 112, which can be either a physical arrange-
ment and/or a logical arrangement of data. Within each tenant
storage space 112, user storage 114 and application metadata
116 might be similarly allocated for each user. For example,
a copy of a user’s most recently used (MRU) items might be
stored to user storage 114. Similarly, a copy of MRU items for
an entire organization that is a tenant might be stored to tenant
storage space 112. A UI 30 provides a user interface and an
API 32 provides an application programmer interface to sys-
tem 16 resident processes to users and/or developers at user
systems 12. The tenant data and the system data may be stored
in various databases, such as one or more Oracle® databases.

Application platform 18 includes an application setup
mechanism 38 that supports application developers’ creation
and management of applications, which may be saved as
metadata into tenant data storage 22 by save routines 36 for
execution by subscribers as one or more tenant process spaces
104 managed by tenant management process 110 for
example. Invocations to such applications may be coded
using PL/SOQL 34 that provides a programming language
style interface extension to API 32. A detailed description of
some PL/SOQL language implementations is discussed in
commonly assigned U.S. Pat. No. 7,730,478, titled
METHOD AND SYSTEM FOR ALLOWING ACCESS TO
DEVELOPED APPLICATIONS VIA A MULTI-TENANT
ON-DEMAND DATABASE SERVICE, by Craig Weissman,
issued on Jun. 1, 2010, and hereby incorporated by reference
in its entirety and for all purposes. Invocations to applications
may be detected by one or more system processes, which
manage retrieving application metadata 116 for the sub-
scriber making the invocation and executing the metadata as
an application in a virtual machine.

Each application server 100 may be communicably
coupled to database systems, e.g., having access to system
data 25 and tenant data 23, via a different network connection.
For example, one application server 1001 might be coupled
via the network 14 (e.g., the Internet), another application
server 100N-1 might be coupled via a direct network link,
and another application server 100N might be coupled by yet
a different network connection. Transfer Control Protocol
and Internet Protocol (TCP/IP) are typical protocols for com-
municating between application servers 100 and the database
system. However, it will be apparent to one skilled in the art

10

15

20

25

30

35

40

45

50

55

60

65

14

that other transport protocols may be used to optimize the
system depending on the network interconnect used.

In certain implementations, each application server 100 is
configured to handle requests for any user associated with any
organization that is a tenant. Because it is desirable to be able
to add and remove application servers from the server pool at
any time for any reason, there is preferably no server affinity
for a user and/or organization to a specific application server
100. In one implementation, therefore, an interface system
implementing a load balancing function (e.g., an F5 Big-IP
load balancer) is communicably coupled between the appli-
cation servers 100 and the user systems 12 to distribute
requests to the application servers 100. In one implementa-
tion, the load balancer uses a least connections algorithm to
route user requests to the application servers 100. Other
examples of load balancing algorithms, such as round robin
and observed response time, also can be used. For example, in
certain implementations, three consecutive requests from the
same user could hit three different application servers 100,
and three requests from different users could hit the same
application server 100. In this manner, by way of example,
system 16 is multi-tenant, wherein system 16 handles storage
of, and access to, different objects, data and applications
across disparate users and organizations.

As an example of storage, one tenant might be a company
that employs a sales force where each salesperson uses sys-
tem 16 to manage their sales process. Thus, a user might
maintain contact data, leads data, customer follow-up data,
performance data, goals and progress data, etc., all applicable
to that user’s personal sales process (e.g., in tenant data stor-
age 22). In an example of a MTS arrangement, since all of the
data and the applications to access, view, modify, report,
transmit, calculate, etc., can be maintained and accessed by a
user system having nothing more than network access, the
user can manage his or her sales efforts and cycles from any
of many different user systems. For example, if a salesperson
is visiting a customer and the customer has Internet access in
their lobby, the salesperson can obtain critical updates as to
that customer while waiting for the customer to arrive in the
lobby.

While each user’s data might be separate from other users’
data regardless of the employers of each user, some data
might be organization-wide data shared or accessible by a
plurality of users or all of the users for a given organization
that is a tenant. Thus, there might be some data structures
managed by system 16 that are allocated at the tenant level
while other data structures might be managed at the user level.
Because an MTS might support multiple tenants including
possible competitors, the MTS should have security protocols
that keep data, applications, and application use separate.
Also, because many tenants may opt for access to an MTS
rather than maintain their own system, redundancy, up-time,
and backup are additional functions that may be implemented
in the MTS. In addition to user-specific data and tenant-
specific data, system 16 might also maintain system level data
usable by multiple tenants or other data. Such system level
data might include industry reports, news, postings, and the
like that are sharable among tenants.

In certain implementations, user systems 12 (which may be
client systems) communicate with application servers 100 to
request and update system-level and tenant-level data from
system 16 that may involve sending one or more queries to
tenant data storage 22 and/or system data storage 24. System
16 (e.g., an application server 100 in system 16) automati-
cally generates one or more SQL statements (e.g., one or
more SQL queries) that are designed to access the desired

US 9,241,017 B2

15

information. System data storage 24 may generate query
plans to access the requested data from the database.

Each database can generally be viewed as a collection of
objects, such as a set of logical tables, containing data fitted
into predefined categories. A “table” is one representation of
a data object, and may be used herein to simplify the concep-
tual description of objects and custom objects according to
some implementations. It should be understood that “table”
and “object” may be used interchangeably herein. Each table
generally contains one or more data categories logically
arranged as columns or fields in a viewable schema. Each row
or record of a table contains an instance of data for each
category defined by the fields. For example, a CRM database
may include a table that describes a customer with fields for
basic contact information such as name, address, phone num-
ber, fax number, etc. Another table might describe a purchase
order, including fields for information such as customer,
product, sale price, date, etc. In some multi-tenant database
systems, standard entity tables might be provided for use by
all tenants. For CRM database applications, such standard
entities might include tables for case, account, contact, lead,
and opportunity data objects, each containing pre-defined
fields. It should be understood that the word “entity” may also
be used interchangeably herein with “object” and “table”.

In some multi-tenant database systems, tenants may be
allowed to create and store custom objects, or they may be
allowed to customize standard entities or objects, for example
by creating custom fields for standard objects, including cus-
tom index fields. Commonly assigned U.S. Pat. No. 7,779,
039, titled CUSTOM ENTITIES AND FIELDS IN A
MULTI-TENANT DATABASE SYSTEM, by Weissman et
al., issued on Aug. 17, 2010, and hereby incorporated by
reference in its entirety and for all purposes, teaches systems
and methods for creating custom objects as well as custom-
izing standard objects in a multi-tenant database system. In
certain implementations, for example, all custom entity data
rows are stored in a single multi-tenant physical table, which
may contain multiple logical tables per organization. It is
transparent to customers that their multiple “tables” are in fact
stored in one large table or that their data may be stored in the
same table as the data of other customers.

FIG. 2A shows a system diagram illustrating an example of
architectural components of an on-demand database service
environment 200 according to some implementations. A cli-
ent machine located in the cloud 204, generally referring to
one or more networks in combination, as described herein,
may communicate with the on-demand database service envi-
ronment via one or more edge routers 208 and 212. A client
machine can be any of the examples of user systems 12
described above. The edge routers may communicate with
one or more core switches 220 and 224 via firewall 216. The
core switches may communicate with a load balancer 228,
which may distribute server load over different pods, such as
the pods 240 and 244. The pods 240 and 244, which may each
include one or more servers and/or other computing
resources, may perform data processing and other operations
used to provide on-demand services. Communication with
the pods may be conducted via pod switches 232 and 236.
Components of the on-demand database service environment
may communicate with a database storage 256 via a database
firewall 248 and a database switch 252.

As shown in FIGS. 2A and 2B, accessing an on-demand
database service environment may involve communications
transmitted among a variety of different hardware and/or
software components. Further, the on-demand database ser-
vice environment 200 is a simplified representation of an
actual on-demand database service environment. For

5

10

15

20

25

30

35

40

45

50

55

60

65

16

example, while only one or two devices of each type are
shown in FIGS. 2A and 2B, some implementations of an
on-demand database service environment may include any-
where from one to many devices of each type. Also, the
on-demand database service environment need not include
each device shown in FIGS. 2A and 2B, or may include
additional devices not shown in FIGS. 2A and 2B.

Moreover, one or more of the devices in the on-demand
database service environment 200 may be implemented on
the same physical device or on different hardware. Some
devices may be implemented using hardware or a combina-
tion of hardware and software. Thus, terms such as “data
processing apparatus,” “machine,” “server” and “device” as
used herein are not limited to a single hardware device, but
rather include any hardware and software configured to pro-
vide the described functionality.

The cloud 204 is intended to refer to a data network or
plurality of data networks, often including the Internet. Client
machines located in the cloud 204 may communicate with the
on-demand database service environment to access services
provided by the on-demand database service environment.
For example, client machines may access the on-demand
database service environment to retrieve, store, edit, and/or
process information.

In some implementations, the edge routers 208 and 212
route packets between the cloud 204 and other components of
the on-demand database service environment 200. The edge
routers 208 and 212 may employ the Border Gateway Proto-
col (BGP). The BGP is the core routing protocol of the Inter-
net. The edge routers 208 and 212 may maintain a table of IP
networks or ‘prefixes’, which designate network reachability
among autonomous systems on the Internet.

In one or more implementations, the firewall 216 may
protect the inner components of the on-demand database
service environment 200 from Internet traffic. The firewall
216 may block, permit, or deny access to the inner compo-
nents of the on-demand database service environment 200
based upon a set of rules and other criteria. The firewall 216
may act as one or more of a packet filter, an application
gateway, a stateful filter, a proxy server, or any other type of
firewall.

In some implementations, the core switches 220 and 224
are high-capacity switches that transfer packets within the
on-demand database service environment 200. The core
switches 220 and 224 may be configured as network bridges
that quickly route data between different components within
the on-demand database service environment. In some imple-
mentations, the use of two or more core switches 220 and 224
may provide redundancy and/or reduced latency.

In some implementations, the pods 240 and 244 may per-
form the core data processing and service functions provided
by the on-demand database service environment. Each pod
may include various types of hardware and/or software com-
puting resources. An example of the pod architecture is dis-
cussed in greater detail with reference to FIG. 2B.

In some implementations, communication between the
pods 240 and 244 may be conducted via the pod switches 232
and 236. The pod switches 232 and 236 may facilitate com-
munication between the pods 240 and 244 and client
machines located in the cloud 204, for example via core
switches 220 and 224. Also, the pod switches 232 and 236
may facilitate communication between the pods 240 and 244
and the database storage 256.

In some implementations, the load balancer 228 may dis-
tribute workload between the pods 240 and 244. Balancing
the on-demand service requests between the pods may assist
in improving the use of resources, increasing throughput,

2 <

US 9,241,017 B2

17

reducing response times, and/or reducing overhead. The load
balancer 228 may include multilayer switches to analyze and
forward traffic.

In some implementations, access to the database storage
256 may be guarded by a database firewall 248. The database
firewall 248 may act as a computer application firewall oper-
ating at the database application layer of a protocol stack. The
database firewall 248 may protect the database storage 256
from application attacks such as structure query language
(SQL) injection, database rootkits, and unauthorized infor-
mation disclosure.

In some implementations, the database firewall 248 may
include a host using one or more forms of reverse proxy
services to proxy traffic before passing it to a gateway router.
The database firewall 248 may inspect the contents of data-
base traffic and block certain content or database requests.
The database firewall 248 may work on the SQL application
level atop the TCP/IP stack, managing applications’ connec-
tion to the database or SQL. management interfaces as well as
intercepting and enforcing packets traveling to or from a
database network or application interface.

In some implementations, communication with the data-
base storage 256 may be conducted via the database switch
252. The multi-tenant database storage 256 may include more
than one hardware and/or software components for handling
database queries. Accordingly, the database switch 252 may
direct database queries transmitted by other components of
the on-demand database service environment (e.g., the pods
240 and 244) to the correct components within the database
storage 256.

In some implementations, the database storage 256 is an
on-demand database system shared by many different orga-
nizations. The on-demand database system may employ a
multi-tenant approach, a virtualized approach, or any other
type of database approach. An on-demand database system is
discussed in greater detail with reference to FIGS. 1A and 1B.

FIG. 2B shows a system diagram further illustrating an
example of architectural components of an on-demand data-
base service environment according to some implementa-
tions. The pod 244 may be used to render services to a user of
the on-demand database service environment 200. In some
implementations, each pod may include a variety of servers
and/or other systems. The pod 244 includes one or more
content batch servers 264, content search servers 268, query
servers 282, file force servers 286, access control system
(ACS) servers 280, batch servers 284, and app servers 288.
Also, the pod 244 includes database instances 290, quick file
systems (QFS) 292, and indexers 294. In one or more imple-
mentations, some or all communication between the servers
in the pod 244 may be transmitted via the switch 236.

In some implementations, the app servers 288 may include
a hardware and/or software framework dedicated to the
execution of procedures (e.g., programs, routines, scripts) for
supporting the construction of applications provided by the
on-demand database service environment 200 via the pod
244. In some implementations, the hardware and/or software
framework of an app server 288 is configured to execute
operations of the services described herein, including perfor-
mance of the blocks of methods described with reference to
FIGS. 15-20. In alternative implementations, two or more app
servers 288 may be included and cooperate to perform such
methods, or one or more other servers described herein can be
configured to perform the disclosed methods.

The content batch servers 264 may handle requests internal
to the pod. These requests may be long-running and/or not
tied to a particular customer. For example, the content batch

20

25

40

45

55

18

servers 264 may handle requests related to log mining,
cleanup work, and maintenance tasks.

The content search servers 268 may provide query and
indexer functions. For example, the functions provided by the
content search servers 268 may allow users to search through
content stored in the on-demand database service environ-
ment.

The file force servers 286 may manage requests for infor-
mation stored in the Fileforce storage 298. The Fileforce
storage 298 may store information such as documents,
images, and basic large objects (BLOBs). By managing
requests for information using the file force servers 286, the
image footprint on the database may be reduced.

The query servers 282 may be used to retrieve information
from one or more file systems. For example, the query system
282 may receive requests for information from the app serv-
ers 288 and then transmit information queries to the NFS 296
located outside the pod.

The pod 244 may share a database instance 290 configured
as a multi-tenant environment in which different organiza-
tions share access to the same database. Additionally, services
rendered by the pod 244 may call upon various hardware
and/or software resources. In some implementations, the ACS
servers 280 may control access to data, hardware resources,
or software resources.

In some implementations, the batch servers 284 may pro-
cess batch jobs, which are used to run tasks at specified times.
Thus, the batch servers 284 may transmit instructions to other
servers, such as the app servers 288, to trigger the batch jobs.

In some implementations, the QFS 292 may be an open
source file system available from Sun Microsystems® of
Santa Clara, Calif. The QFS may serve as a rapid-access file
system for storing and accessing information available within
the pod 244. The QFS 292 may support some volume man-
agement capabilities, allowing many disks to be grouped
together into a file system. File system metadata can be kept
on a separate set of disks, which may be useful for streaming
applications where long disk seeks cannot be tolerated. Thus,
the QFS system may communicate with one or more content
search servers 268 and/or indexers 294 to identify, retrieve,
move, and/or update data stored in the network file systems
296 and/or other storage systems.

In some implementations, one or more query servers 282
may communicate with the NFS 296 to retrieve and/or update
information stored outside of the pod 244. The NFS 296 may
allow servers located in the pod 244 to access information to
access files over a network in a manner similar to how local
storage is accessed.

In some implementations, queries from the query servers
222 may be transmitted to the NFS 296 via the load balancer
228, which may distribute resource requests over various
resources available in the on-demand database service envi-
ronment. The NFS 296 may also communicate with the QFS
292 to update the information stored on the NFS 296 and/or to
provide information to the QFS 292 for use by servers located
within the pod 244.

In some implementations, the pod may include one or more
database instances 290. The database instance 290 may trans-
mit information to the QFS 292. When information is trans-
mitted to the QFS, it may be available for use by servers
within the pod 244 without using an additional database call.

In some implementations, database information may be
transmitted to the indexer 294. Indexer 294 may provide an
index of information available in the database 290 and/or
QFS 292. The index information may be provided to file force
servers 286 and/or the QFS 292.

US 9,241,017 B2

19

III. Tracking Updates to a Record Stored in a Database

As multiple users might be able to change the data of a
record, it can be useful for certain users to be notified when a
record is updated. Also, even if a user does not have authority
to change a record, the user still might want to know when
there is an update to the record. For example, a vendor may
negotiate a new price with a salesperson of company X, where
the salesperson is a user associated with tenant Y. As part of
creating a new invoice or for accounting purposes, the sales-
person can change the price saved in the database. It may be
important for co-workers to know that the price has changed.
The salesperson could send an email to certain people, but this
is onerous and the salesperson might not email all of the
people who need to know or want to know. Accordingly, some
implementations of the disclosed techniques can inform oth-
ers (e.g., co-workers) who want to know about an update to a
record automatically.

FIG. 3 shows a flowchart of an example of a method 300 for
tracking updates to a record stored in a database system,
performed in accordance with some implementations.
Method 300 (and other methods described herein) may be
implemented at least partially with multi-tenant database sys-
tem 16, e.g., by one or more processors configured to receive
or retrieve information, process the information, store results,
and transmit the results. In other implementations, method
300 may be implemented at least partially with a single tenant
database system. In various implementations, blocks may be
omitted, combined, or split into additional blocks for method
300, as well as for other methods described herein.

In block 310, the database system receives a request to
update a first record. In one implementation, the request is
received from a first user. For example, a user may be access-
ing a page associated with the first record, and may change a
displayed field and hit save. In another implementation, the
database system can automatically create the request. For
instance, the database system can create the request in
response to another event, e.g., a request to change a field
could be sent periodically at a particular date and/or time of
day, or a change to another field or object. The database
system can obtain a new value based on other fields of a
record and/or based on parameters in the system.

The request for the update of a field of a record is an
example of an event associated with the first record for which
a feed tracked update may be created. In other implementa-
tions, the database system can identify other events besides
updates to fields of a record. For example, an event can be a
submission of approval to change a field. Such an event can
also have an associated field (e.g., a field showing a status of
whether a change has been submitted). Other examples of
events can include creation of a record, deletion of a record,
converting a record from one type to another (e.g., converting
a lead to an opportunity), closing a record (e.g., a case type
record), and potentially any other state change of a record—
any of which could include a field change associated with the
state change. Any of these events update the record whether
by changing a field of the record, a state of the record, or some
other characteristic or property of the record. In one imple-
mentation, a list of supported events for creating a feed
tracked update can be maintained within the database system,
e.g., at a server or in a database.

In block 320, the database system writes new data to the
first record. In one implementation, the new data may include
a new value that replaces old data. For example, a field is
updated with a new value. In another implementation, the new
data can be a value for a field that did not contain data before.

30

40

45

55

20

In yet another implementation, the new data could be a flag,
e.g., for a status of the record, which can be stored as a field of
the record.

In some implementations, a “field” can also include
records, which are child objects of the first record in a parent-
child hierarchy. A field can alternatively include a pointer to a
child record. A child object itself can include further fields.
Thus, if a field of a child object is updated with a new value,
the parent record also can be considered to have a field
changed. In one example, a field could be a list of related child
objects, also called a related list.

In block 330, a feed tracked update is generated about the
update to the record. In one implementation, the feed tracked
update is created in parts for assembling later into a display
version. For example, event entries can be created and tracked
in a first table, and changed field entries can be tracked in
another table that is cross-referenced with the first table. More
specifics of such implementations are provided later, e.g.,
with respect to FIG. 9A. In another implementation, the feed
tracked update is automatically generated by the database
system. The feed tracked update can convey in words that the
first record has been updated and provide details about what
was updated in the record and who performed the update. In
some implementations, a feed tracked update is generated for
only certain types of event and/or updates associated with the
first record.

In one implementation, a tenant (e.g., through an adminis-
trator) can configure the database system to create (enable)
feed tracked updates only for certain types of records. For
example, an administrator can specify that records of desig-
nated types such as accounts and opportunities are enabled.
When an update (or other event) is received for the enabled
record type, then a feed tracked update would be generated. In
another implementation, a tenant can also specify the fields of
arecord whose changes are to be tracked, and for which feed
tracked updates are created. In one aspect, a maximum num-
ber of fields can be specified for tracking, and may include
custom fields. In one implementation, the type of change can
also be specified, for example, that the value change of a field
is to be larger than a threshold (e.g., an absolute amount or a
percentage change). In yet another implementation, a tenant
can specify which events are to cause a generation of a feed
tracked update. Also, in one implementation, individual users
can specify configurations specific to them, which can create
custom feeds as described in more detail below.

In one implementation, changes to fields of a child object
are not tracked to create feed tracked updates for the parent
record. In another implementation, the changes to fields of a
child object can be tracked to create feed tracked updates for
the parent record. For example, a child object of the parent
type can be specified for tracking, and certain fields of the
child object can be specified for tracking. As another
example, if the child object is of a type specified for tracking,
then a tracked change for the child object is propagated to
parent records of the child object.

In block 340, the feed tracked update is added to a feed for
the first record. In one implementation, adding the feed
tracked update to a feed can include adding events to a table
(which may be specific to a record or be for all or a group of
objects), where a display version of a feed tracked update can
be generated dynamically and presented in a GUI as a feed
item when a user requests a feed for the first record. In another
implementation, a display version of a feed tracked update
can be added when a record feed is stored and maintained for
a record. As mentioned above, a feed may be maintained for
only certain records. In one implementation, the feed of a
record can be stored in the database associated with the

US 9,241,017 B2

21

record. For example, the feed can be stored as a field (e.g., as
achild object) of the record. Such a field can store a pointer to
the text to be displayed for the feed tracked update.

In some implementations, only the current feed tracked
update (or other current feed item) may be kept or temporarily
stored, e.g., in some temporary memory structure. For
example, a feed tracked update for only a most recent change
to any particular field is kept. In other implementations, many
previous feed tracked updates may be kept in the feed. A time
and/or date for each feed tracked update can be tracked.
Herein, a feed of a record is also referred to as an entity feed,
as a record is an instance of a particular entity object of the
database.

In block 350, followers of the first record can be identified.
A follower is a user following the first record, such as a
subscriber to the feed of the first record. In one implementa-
tion, when a user requests a feed of a particular record, such
an identification of block 350 can be omitted. In another
implementation where a record feed is pushed to a user (e.g.,
as part of a news feed), then the user can be identified as a
follower of the first record. Accordingly, this block can
include the identification of records and other objects being
followed by a particular user.

In one implementation, the database system can store a list
of'the followers for a particular record. In various implemen-
tations, the list can be stored with the first record or associated
with the record using an identifier (e.g., a pointer) to retrieve
the list. For example, the list can be stored in a field of the first
record. In another implementation, a list of the records that a
user is following is used. In one implementation, the database
system can have a routine that runs for each user, where the
routine polls the records in the list to determine if a new feed
tracked update has been added to a feed of the record. In
another implementation, the routine for the user can be run-
ning at least partially on a user device, which contacts the
database to perform the polling.

In block 360, in one implementation, the feed tracked
update can be stored in a table, as described in greater detail
below. When the user opens a feed, an appropriate query is
sent to one or more tables to retrieve updates to records, also
described in greater detail below. In some implementations,
the feed shows feed tracked updates in reverse chronological
order. In one implementation, the feed tracked update is
pushed to the feed of a user, e.g., by a routine that determines
the followers for the record from a list associated with the
record. In another implementation, the feed tracked update is
pulled to a feed, e.g., by auser device. This pulling may occur
when a user requests the feed, as occurs in block 370. Thus,
these actions may occur in a different order. The creation of
the feed for a pull may be a dynamic creation that identifies
records being followed by the requesting user, generates the
display version of relevant feed tracked updates from stored
information (e.g., event and field change), and adds the feed
tracked updates into the feed. A feed of feed tracked updates
of records and other objects that a user is following is also
generally referred to herein as a news feed, which can be a
subset of a larger information feed in which other types of
information updates appear, such as posts.

In yet another implementation, the feed tracked update
could be sent as an email to the follower, instead of in a feed.
In one implementation, email alerts for events can enable
people to be emailed when certain events occur. In another
implementation, emails can be sent when there are posts on a
user profile and posts on entities to which the user subscribes.
In one implementation, a user can turn on/off email alerts for
all or some events. In an implementation, a user can specify
what kind of feed tracked updates to receive about a record

25

40

45

50

55

22

that the user is following. For example, a user can choose to
only receive feed tracked updates about certain fields of a
record that the user is following, and potentially about what
kind of update was performed (e.g., a new value input into a
specified field, or the creation of a new field).

Inblock 370, a follower can access his/her news feed to see
the feed tracked update. In one implementation, the user has
just one news feed for all of the records that the user is
following. In one aspect, a user can access his/her own feed by
selecting a particular tab or other object on a page of an
interface to the database system. Once selected the feed can
be provided as a list, e.g., with an identifier (e.g., a time) or
including some or all of the text of the feed tracked update. In
another implementation, the user can specify how the feed
tracked updates are to be displayed and/or sent to the user. For
example, a user can specify a font for the text, a location of
where the feed can be selected and displayed, amount of text
to be displayed, and other text or symbols to be displayed
(e.g., importance flags).

FIG. 4 shows a block diagram of an example of compo-
nents of a database system configuration 400 performing a
method for tracking an update to a record according to some
implementations. Database system configuration 400 can
perform implementations of method 300, as well as imple-
mentations of other methods described herein.

A first user 405 sends a request 1 to update record 425 in
database system 416. Although an update request is
described, other events that are being tracked are equally
applicable. In various implementations, the request 1 can be
sent via a user interface (e.g., 30 of FIG. 1B) or an application
program interface (e.g., AP132). An I/O port 420 can accom-
modate the signals of request 1 via any input interface, and
send the signals to one or more processors 417. The processor
417 can analyze the request and determine operations to be
performed. Herein, any reference to a processor 417 can refer
to a specific processor or any set of processors in database
system 416, which can be collectively referred to as processor
417.

Processor 417 can determine an identifier for record 425,
and send commands with the new data 2 of the request to
record database 412 to update record 425. In one implemen-
tation, record database 412 is where tenant storage space 112
of FIG. 1B is located. The request 1 and new data commands
2 can be encapsulated in a single write transaction sent to
record database 412. In one implementation, multiple
changes to records in the database can be made in a single
write transaction.

Processor 417 can also analyze request 1 to determine
whether a feed tracked update is to be created, which at this
point may include determining whether the event (e.g., a
change to a particular field) is to be tracked. This determina-
tion can be based on an interaction (i.e., an exchange of data)
with record database 412 and/or other databases, or based on
information stored locally (e.g., in cache or RAM) at proces-
sor 417. In one implementation, a list of record types that are
being tracked can be stored. The list may be different for each
tenant, e.g., as each tenant may configure the database system
to its own specifications. Thus, if the record 425 is of a type
not being tracked, then the determination of whether to create
a feed tracked update can stop there.

The same list or a second list (which can be stored in a same
location or a different location) can also include the fields
and/or events that are tracked for the record types in the first
list. This list can be searched to determine if the event is being
tracked. A list may also contain information having the granu-

US 9,241,017 B2

23

larity of listing specific records that are to be tracked (e.g., if
a tenant can specify the particular records to be tracked, as
opposed to just type).

As an example, processor 417 may obtain an identifier
associated with record 425 (e.g., obtained from request 1 or
database 412), potentially along with a tenant identifier, and
cross-reference the identifier with a list of records for which
feed tracked updates are to be created. Specifically, the record
identifier can be used to determine the record type and a list of
tracked types can be searched for a match. The specific record
may also be checked if such individual record tracking was
enabled. The name of the field to be changed can also be used
to search a list of tracking-enabled fields. Other criteria
besides field and events can be used to determine whether a
feed tracked update is created, e.g., type of change in the field.
If a feed tracked update is to be generated, processor 417 can
then generate the feed tracked update.

In some implementations, a feed tracked update is created
dynamically when a feed (e.g., the entity feed of record 425)
is requested. Thus, in one implementation, a feed tracked
update can be created when a user requests the entity feed for
record 425. In this implementation, the feed tracked update
may be created (e.g., assembled), including re-created, each
time the entity feed is to be displayed to any user. In one
implementation, one or more event history tables can keep
track of previous events so that the feed tracked update can be
re-created.

In another implementation, a feed tracked update can be
created at the time the event occurs, and the feed tracked
update can be added to a list of feed items. The list of feed
items may be specific to record 425, or may be an aggregate
of feed items including feed items for many records. Such an
aggregate list can include a record identifier so that the feed
items for the entity feed of record 425 can be easily retrieved.
For example, after the feed tracked update has been gener-
ated, processor 417 can add the new feed tracked update 3 to
a feed of record 425. As mentioned above, in one implemen-
tation, the feed can be stored in a field (e.g., as a child object)
of record 425. In another implementation, the feed can be
stored in another location or in another database, but with a
link (e.g., a connecting identifier) to record 425. The feed can
be organized in various ways, e.g., as a linked list, an array, or
other data structure.

A second user 430 can access the new feed tracked update
3 in various ways. In one implementation, second user 430
can send a request 4 for the record feed. For example, second
user 430 can access a home page (detail page) of the record
425 (e.g., with a query or by browsing), and the feed can be
obtained through a tab, button, or other activation object on
the page. The feed can be displayed on the screen or down-
loaded.

In another implementation, processor 417 can add the new
feed tracked update 5 to a feed (e.g., anews feed) of a user that
is following record 425. In one implementation, processor
417 can determine each of the followers of record 425 by
accessing a list of the users that have been registered as
followers. This determination can be done for each new event
(e.g., update 1). In another implementation, processor 417
can poll (e.g., with a query) the records that second user 430
is following to determine when new feed tracked updates (or
other feed items) are available. Processor 417 can use a fol-
lower profile 435 of second user 430 that can contain a list of
the records that the second user 430 is following. Such a list
can be contained in other parts of the database as well. Second
user 430 can then send a request 6 to his/her profile 435 to
obtain a feed, which contains the new feed tracked update.

25

40

45

24

The user’s profile 435 can be stored in a profile database 414,
which can be the same or different than database 412.

In some implementations, a user can define a news feed to
include new feed tracked updates from various records, which
may be limited to a maximum number. In one implementa-
tion, each user has one news feed. In another implementation,
the follower profile 435 can include the specifications of each
of the records to be followed (with the criteria for what feed
tracked updates are to be provided and how they are dis-
played), as well as the feed.

Some implementations can provide various types of record
(entity) feeds. Entity Feeds can exist for record types like
account, opportunity, case, and contact. An entity feed cantell
a user about the actions that people have taken on that par-
ticular record or on one its related records. The entity feed can
include who made the action, which field was changed, and
the old and new values. In one implementation, entity feeds
can exist on all supported records as a list that is linked to the
specific record. For example, a feed could be stored in a field
that allows lists (e.g., linked lists) or as a child object.

IV. Tracking Actions of a User

In addition to knowing about events associated with a
particular record, it can be helpful for a user to know what a
particular user is doing. In particular, it might be nice to know
what the user is doing without the user having to generate the
feed tracked update (e.g., a user submitting a synopsis of what
the user has done). Accordingly, implementations can auto-
matically track actions of a user that trigger events, and feed
tracked updates can be generated for certain events.

FIG. 5 shows a flowchart of an example of a method 500 for
tracking actions of a user of a database system, performed in
accordance with some implementations. Method 500 may be
performed in addition to method 300. The operations of
method 300, including order of blocks, can be performed in
conjunction with method 500 and other methods described
herein. Thus, a feed can be composed of changes to a record
and actions of users.

In block 510, a database system (e.g., 16 of FIGS. 1A and
1B) identifies an action of a first user. In one implementation,
the action triggers an event, and the event is identified. For
example, the action of a user requesting an update to a record
can be identified, where the event is receiving a request or is
the resulting update of a record. The action may thus be
defined by the resulting event. In another implementation,
only certain types of actions (events) are identified. Which
actions are identified can be set as a default or can be config-
urable by a tenant, or even configurable at a user level. In this
way, processing effort can be reduced since only some actions
are identified.

In block 520, it is determined whether the event qualifies
for afeed tracked update. In one implementation, a predefined
list of events (e.g., as mentioned herein) can be created so that
only certain actions are identified. In one implementation, an
administrator (or other user) of a tenant can specify the type of
actions (events) for which a feed tracked update is to be
generated. This block may also be performed for method 300.

In block 530, a feed tracked update is generated about the
action. In an example where the action is an update of a
record, the feed tracked update can be similar or the same as
the feed tracked update created for the record. The description
can be altered though to focus on the user as opposed to the
record. For example, “John D. has closed a new opportunity
for account XYZ” as opposed to “an opportunity has been
closed for account XYZ.’

In block 540, the feed tracked update is added to a profile
feed of the first user when, e.g., the user clicks on a tab to open
a page in a browser program displaying the feed. In one

US 9,241,017 B2

25

implementation, a feed for a particular user can be accessed
on a page of the user’s profile, in a similar manner as a record
feed can be accessed on a detail page of the record. In another
implementation, the first user may not have a profile feed and
the feed tracked update may just be stored temporarily before
proceeding. A profile feed of a user can be stored associated
with the user’s profile. This profile feed can be added to a
news feed of another user.

In block 550, followers of the first user are identified. In
one implementation, a user can specity which type of actions
other users can follow. Similarly, in one implementation, a
follower can select what actions by a user the follower wants
to follow. In an implementation where different followers
follow different types of actions, which users are followers of
that user and the particular action can be identified, e.g., using
various lists that track what actions and criteria are being
followed by a particular user. In various implementations, the
followers of'the first user can be identified in a similar manner
as followers of a record, as described above for block 350.

In block 560, the feed tracked update is added to a news
feed of each follower of the first user when, e.g., the follower
clicks on a tab to open a page displaying the news feed. The
feed tracked update can be added in a similar manner as the
feed items for a record feed. The news feed can contain feed
tracked updates both about users and records. In another
implementation, a user can specify what kind of feed tracked
updates to receive about a user that the user is following. For
example, a user could specify feed tracked updates with par-
ticular keywords, of certain types of records, of records
owned or created by certain users, particular fields, and other
criteria as mentioned herein.

Inblock 570, a follower accesses the news feed and sees the
feed tracked update. In one implementation, the user has just
one news feed for all of the records that the user is following.
Inanother implementation, a user can access his/her own feed
(i.e. feed about his/her own actions) by selecting a particular
tab or other object on a page of an interface to the database
system. Thus, a feed can include feed tracked updates about
what other users are doing in the database system. When a
user becomes aware of a relevant action of another user, the
user can contact the co-worker, thereby fostering teamwork.

V. Generation of a Feed Tracked Update

As described above, some implementations can generate
text describing events (e.g., updates) that have occurred for a
record and actions by a user that trigger an event. A database
system can be configured to generate the feed tracked updates
for various events in various ways.

In one implementation, the feed tracked update is a gram-
matical sentence, thereby being easily understandable by a
person. In another implementation, the feed tracked update
provides detailed information about the update. In various
examples, an old value and new value for a field may be
included in the feed tracked update, an action for the update
may be provided (e.g., submitted for approval), and the names
of particular users that are responsible for replying or acting
on the feed tracked update may be also provided. The feed
tracked update can also have a level of importance based on
settings chosen by the administrator, a particular user request-
ing an update, or by a following user who is to receive the feed
tracked update, which fields is updated, a percentage of the
change in a field, the type of event, or any combination of
these factors.

The system may have a set of heuristics for creating a feed
tracked update from the event (e.g., a request to update). For
example, the subject may be the user, the record, or a field
being added or changed. The verb can be based on the action
requested by the user, which can be selected from a list of

20

40

45

26

verbs (which may be provided as defaults or input by an
administrator of a tenant). In one implementation, feed
tracked updates can be generic containers with formatting
restrictions,

As an example of a feed tracked update for a creation of a
new record, “Mark Abramowitz created a new Opportunity
for IBM-20,000 laptops with Amount as $3.5M and Sam
Palmisano as Decision Maker.” This event can be posted to
the profile feed for Mark Abramowitz and the entity feed for
record of Opportunity for IBM-20,000 laptops. The pattern
can be given by (AgentFullName) created a new
(ObjectName)(RecordName) with [(FieldName) as (Field-
Value) [,/and]]* [[added/changed/removed] (RelatedListRe-
cordName) [as/to/as] (RelatedListRecordValue) [,/and]]*.
Similar patterns can be formed for a changed field (standard
or custom) and an added child record to a related list.

V1. Tracking Commentary from or about a User

Some implementations can also have a user submit text,
instead of the database system generating a feed tracked
update. As the text is submitted as part or all of a message by
auser, the text can be about any topic. Thus, more information
than just actions of a user and events of a record can be
conveyed. In one implementation, the messages can be used
to ask a question about a particular record, and users follow-
ing the record can provide comments and responses.

FIG. 6 shows a flowchart of an example of a method 600 for
creating a news feed from messages created by a user about a
record or another user, performed in accordance with some
implementations. In one implementation, method 600 can be
combined with methods 300 and 500. In one aspect, a mes-
sage can be associated with the first user when the first user
creates the message (e.g., a post or comment about a record or
another user). In another aspect, a message can be associated
with the first user when the message is about the first user
(e.g., posted by another user on the first user’s profile feed).

Inblock 610, the database system receives a message (e.g.,
a post or status update) associated with a first user. The mes-
sage (e.g., a post or status update) can contain text and/or
multimedia content submitted by another user or by the first
user. In one implementation, a post is for a section of the first
user’s profile page where any user can add a post, and where
multiple posts can exist. Thus, a post can appear on the first
user’s profile page and can be viewed when the first user’s
profile is visited. For a message about a record, the post can
appear on a detail page of a record. Note the message can
appear in other feeds as well. In another implementation, a
status update about the first user can only be added by the first
user. In one implementation, a user can only have one status
message.

In block 620, the message is added to a table, as described
in greater detail below. When the feed is opened, a query
filters one or more tables to identify the first user, identify
other persons that the user is following, and retrieve the
message. Messages and record updates are presented in a
combined list as the feed. In this way, in one implementation,
the message can be added to a profile feed of the first user,
which is associated (e.g., as a related list) with the first user’s
profile. In one implementation, the posts are listed indefi-
nitely. In another implementation, only the most recent posts
(e.g., last 50) are kept in the profile feed. Such implementa-
tions can also be employed with feed tracked updates. In yet
another implementation, the message can be added to a pro-
file of the user adding the message.

In block 630, the database system identifies followers of
the first user. In one implementation, the database system can
identify the followers as described above for method 500. In
various implementations, a follower can select to follow a

US 9,241,017 B2

27

feed about the actions of the first user, messages about the first
user, or both (potentially in a same feed).

In block 640, the message is added to a news feed of each
follower. In one implementation, the message is only added to
a news feed of a particular follower if the message matches
some criteria, e.g., the message includes a particular keyword
or other criteria. In another implementation, a message can be
deleted by the user who created the message. In one imple-
mentation, once deleted by the author, the message is deleted
from all feeds to which the message had been added.

Inblock 650, the follower accesses a news feed and sees the
message. For example, the follower can access a news feed on
the follower’s own profile page. As another example, the
follower can have a news feed sent to his/her own desktop
without having to first go to a home page.

In block 660, the database system receives a comment
about the message. The database system can add the comment
to a feed of the same first user, much as the original message
was added. In one implementation, the comment can also be
added to a feed of a second user who added the comment. In
one implementation, users can also reply to the comment. In
another implementation, users can add comments to a feed
tracked update, and further comments can be associated with
the feed tracked update. In yet another implementation, mak-
ing a comment or message is not an action to which a feed
tracked update is created. Thus, the message may be the only
feed item created from such an action.

In one implementation, if a feed tracked update or post is
deleted, its corresponding comments are deleted as well. In
another implementation, new comments on a feed tracked
update or post do not update the feed tracked update times-
tamp. Also, the feed tracked update or post can continue to be
shown in a feed (profile feed, record feed, or news feed) if it
has had a comment within a specified timeframe (e.g., within
the last week). Otherwise, the feed tracked update or post can
be removed in an implementation.

In some implementations, all or most feed tracked updates
can be commented on. In other implementations, feed tracked
updates for certain records (e.g., cases or ideas) are not com-
mentable. In various implementations, comments can be
made for any one or more records of opportunities, accounts,
contacts, leads, and custom objects.

In block 670, the comment is added to a news feed of each
follower. In one implementation, a user can make the com-
ment within the user’s news feed. Such a comment can propa-
gate to the appropriate profile feed or record feed, and then to
the news feeds of the following users. Thus, feeds can include
what people are saying, as well as what they are doing. In one
aspect, feeds are a way to stay up-to-date (e.g., on users,
opportunities, etc.) as well as an opportunity to reach out to
co-workers/partners and engage them around common goals.

In some implementations, users can rate feed tracked
updates or messages (including comments). A user can
choose to prioritize a display of a feed so that higher rated
feed items show up higher on a display. For example, in an
implementation where comments are answers to a specific
question, users can rate the different status posts so that a best
answer can be identified. As another example, users are able
to quickly identify feed items that are most important as those
feed items can be displayed at a top of a list. The order of the
feed items can be based on an importance level (which can be
determined by the database system using various factors,
some of which are mentioned herein) and based on a rating
from users. In one implementation, the rating is on a scale that
includes at least 3 values. In another implementation, the
rating is based on a binary scale.

10

15

20

25

30

35

40

45

50

55

60

65

28

Besides a profile for a user, a group can also be created. In
various implementations, the group can be created based on
certain attributes that are common to the users, can be created
by inviting users, and/or can be created by receiving requests
to join from a user. In one implementation, a group feed can
be created, with messages being added to the group feed when
someone submits a message to the group as a whole through
a suitable user interface. For example, a group page may have
a group feed or a section within the feed for posts, and a user
can submit a post through a publisher component in the user
interface by clicking on a “Share” or similar button. In
another implementation, a message can be added to a group
feed when the message is submitted about any one of the
members. Also, a group feed can include feed tracked updates
about actions of the group as a whole (e.g., when an admin-
istrator changes data in a group profile or a record owned by
the group), or about actions of an individual member.

FIG. 7 shows an example of a group feed on a group page
according to some implementations. As shown, a feed item
710 shows that a user has posted a document to the group
object. The text “Bill Bauer has posted the document Com-
petitive Insights” can be generated by the database system in
a similar manner as feed tracked updates about a record being
changed. A feed item 720 shows a post to the group, along
with comments 730 from Ella Johnson, James Saxon, Mary
Moore and Bill Bauer.

FIG. 8 shows an example of a record feed containing a feed
tracked update, post, and comments according to some imple-
mentations. Feed item 810 shows a feed tracked update based
on the event of submitting a discount for approval. Other feed
items show posts, e.g., from Bill Bauer, that are made to the
record and comments, e.g., from Erica Law and Jake Rapp,
that are made on the posts.

VII. Infrastructure for a Feed

A. Tables Used to Create a Feed

FIG. 9A shows an example of a plurality of feed tracked
update tables that may be used in tracking events and creating
feeds according to some implementations. The tables of FIG.
9 A may have entries added, or potentially removed, as part of
tracking events in the database from which feed items are
creates or that correspond to feed items. In one implementa-
tion, each tenant has its own set of tables that are created
based on criteria provided by the tenant.

An event history table 910 can provide a feed tracked
update of events from which feed items are created. In one
aspect, the events are for objects that are being tracked. Thus,
table 910 can store and change feed tracked updates for feeds,
and the changes can be persisted. In various implementations,
event history table 910 can have columns of event ID 911,
object ID 912 (also called parent ID), and created by 1D 913.
The event ID 911 can uniquely identify a particular event and
can start at 1 (or other number or value).

Each new event can be added chronologically with a new
event ID, which may be incremented in order. An object ID
912 can be used to track which record or user’s profile is being
changed. For example, the object ID can correspond to the
record whose field is being changed or the user whose feed is
receiving a post. The created by ID 913 can track the user who
is performing the action that results in the event, e.g., the user
that is changing the field or that is posting a message to the
profile of another user.

In one implementation, a name of an event can also be
stored in table 910. In one implementation, a tenant can
specify events that they want tracked. In an implementation,
event history table 910 can include the name of the field that
changed (e.g., old and new values). In another implementa-
tion, the name of the field, and the values, are stored in a

US 9,241,017 B2

29

separate table. Other information about an event (e.g., text of
comment, feed tracked update, post or status update) can be
stored in event history table 910, or in other tables, as is now
described.

A field change table 920 can provide a feed tracked update
of the changes to the fields. The columns of table 920 can
include an event ID 921 (which correlates to the event ID
911), an old value 922 for the field, and the new value 923 for
the field. In one implementation, if an event changes more
than one field value, then there can be an entry for each field
changed. As shown, event ID 921 has two entries for event
E37.

A comment table 930 can provide a feed tracked update of
the comments made regarding an event, e.g., a comment on a
post or a change of a field value. The columns oftable 930 can
include an event ID 921 (which correlates to the event ID
911), the comment column 932 that stores the text of the
comment, and the time/date 933 of the comment. In one
implementation, there can be multiple comments for each
event. As shown, event ID 921 has two entries for event E37.

A user subscription table 940 can provide a list of the
objects being followed (subscribed to) by a user. In one imple-
mentation, each entry has a user ID 941 of the user doing the
following and one object ID 942 corresponding to the object
being followed. In one implementation, the object being fol-
lowed can be a record or a user. As shown, the user with 1D
U819 is following object IDs 0615 and 0489. [fuser U819 is
following other objects, then additional entries may exist for
user U819. Also as shown, user U719 is also following object
0615. The user subscription table 940 can be updated when a
user adds or deletes an object that is being followed.

In one implementation, regarding a profile feed and a news
feed, these are read-only views on the event history table 910
specialized for these feed types. Conceptually the news feed
can be a semi join between the user subscription table 940 and
the event history table 910 on the object IDs 912 and 942 for
the user. In one aspect, these entities can have polymorphic
parents and can be subject to a number of restrictions detailed
herein, e.g., to limit the cost of sharing checks.

In one implementation, entity feeds are modeled in the API
as a feed associate entity (e.g., AccountFeed, CaseFeed, etc).
A feed associate entity includes information composed of
events (e.g., event IDs) for only one particular record type.
Such a list can limit the query (and sharing checks) to a
specific record type. In one aspect, this structuring of the
entity feeds can make the query run faster. For example, a
request for a feed of a particular account can include the
record type of account. In one implementation, an account
feed table can then be searched, where the table has account
record IDs and corresponding event IDs or pointers to par-
ticular event entries in event history table 910. Since the
account feed table only contains some of the records (not all),
the query can run faster.

In one implementation, there may be objects with no events
listed in the event history table 910, even though the record is
being tracked. In this case, the database service can return a
result indicating that no feed items exist.

A feed item can represent an individual field change of a
record, creation and deletion of a record, or other events being
tracked for a record or auser. In one implementation, all of the
feed items in a single transaction (event) can be grouped
together and have the same event ID. A single transaction
relates to the operations that can be performed in a single
communication with the database. In another implementation
where a feed is an object of the database, a feed item can be a
child of a profile feed, news feed, or entity feed. If a feed item

10

15

20

25

30

35

40

45

50

55

60

65

30
is added to multiple feeds, the feed item can be replicated as
a child of each feed to which the feed item is added.

In some implementations, a comment exists as an item that
depends from feed tracked updates, posts, status updates, and
other items that are independent of each other. Thus, a feed
comment object can exist as a child object of a feed item
object. For example, comment table 930 can be considered a
child table of event history table 910. In one implementation,
a feed comment can be a child of a profile feed, news feed, or
entity feed that is separate from other feed items.

In one implementation, viewing a feed pulls up the most
recent messages or feed tracked updates (e.g., 25) and
searches the most recent (e.g., 4) comments for each feed
item. The comments can be identified via the comment table
930. In one implementation, a user can request to see more
comments, e.g., by selecting a see more link.

After feed items have been generated, they can be filtered
so that only certain feed items are displayed, which may be
tailored to a specific tenant and/or user. In one implementa-
tion, a user can specify changes to a field that meet certain
criteria for the feed item to show up in a feed displayed to the
user, e.g., a news feed or even an entity feed displayed directly
to the user. In one implementation, the criteria can be com-
bined with other factors (e.g., number of feed items in the
feed) to determine which feed items to display. For instance,
if a small number of feed items exist (e.g., below a threshold),
then all of the feed items may be displayed.

In one implementation, a user can specify the criteria via a
query on the feed items in his/her new feed, and thus a feed
may only return objects of a certain type, certain types of
events, feed tracked updates about certain fields, and other
criteria mentioned herein. Messages can also be filtered
according to some criteria, which may be specified in a query.
Such an added query can be added onto a standard query that
is used to create the news feed for a user. A first user could
specify the users and records that the first user is following in
this manner, as well as identify the specific feed items that the
first user wants to follow. The query could be created through
a graphical interface or added by a user directly in a query
language. Other criteria could include receiving only posts
directed to a particular user or record, as opposed to other feed
items.

In one implementation, a user can access a feed of a record
if the user can access the record. The security rules for deter-
mining whether a user has access to arecord can be performed
in a variety of ways, some of which are described in com-
monly assigned U.S. Pat. No. 8,095,531, titted METHODS
AND SYSTEMS FOR CONTROLLING ACCESS TO CUS-
TOM OBJECTS IN A DATABASE, by Weissman et al.,
issued on Jan. 10, 2012, and hereby incorporated by reference
in its entirety and for all purposes.

In one implementation, a user can edit a feed of a record if
the user has access to the record, e.g., deleting or editing a
feed item. In another implementation, a user (besides an
administrator) cannot edit a feed item, except for performing
an action from which a feed item can be created. In one
example, auser is first has to have access to a particular record
and field for a feed item to be created based on an action of the
user. In this case, an administrator can be considered to be a
user with MODIFY-ALL-DATA security level. In yet another
implementation, a user who created the record can edit the
feed.

Inone implementation, the text of posts are stored in a child
table (post table 950), which can be cross-referenced with
event history table 910. Post table 950 can include event ID
951 (to cross-reference with event ID 911), post text 952 to

US 9,241,017 B2

31

store the text of the post, and time/date 953. An entry in post
table 950 can be considered a feed post object.

VIII. Subscribing to Users and Records to Follow

As described above, a user can follow users, groups, and
records. Implementations can provide mechanisms for a user
to manage which users, groups, and records that the user is
currently following. In one implementation, a user can be
limited to the number of users and records (collectively or
separately) that the user can follow. For example, a user may
be restricted to only following 10 users and 15 records, or as
another example, 25 total. Alternatively, the user may be
permitted to follow more or less users.

In one implementation, a user can go to a page of a record
and then select to follow that object (e.g., with a button
marked “follow” or “join”). Inanother implementation, a user
can search for a record and have the matching records show
up in a list. The search can include criteria of records that the
user might want to follow. Such criteria can include the
owner, the creation date, last comment date, and numerical
values of particular fields (e.g., an opportunity with a value of
more than $10,000).

A follow button (or other activation object) can then reside
next to each record in the resulting list, and the follow button
can be selected to start following the record. Similarly, a user
can go to a profile page of a user and select to follow the user,
or a search for users can provide a list, where one or more
users can be selected for following from the list. The selec-
tions of subscribing and unsubscribing can add and delete
rows in table 920.

In some implementations, a subscription center acts as a
centralized place in a database application (e.g., application
platform 18) to manage which records a user subscribes to,
and which field updates the user wants to see in feed tracked
updates. The subscription center can use a subscription table
to keep track of the subscriptions of various users. In one
implementation, the subscription center shows a list of all the
items (users and records) a user is subscribed to. In another
implementation, a user can unsubscribe to subscribed objects
from the subscription center.

A. Automatic Subscription

FIG. 9B shows a flowchart of an example of a method 900
for automatically subscribing a user to an object in a database
system, performed in accordance with some implementa-
tions. Any of the following blocks can be performed wholly or
partially with the database system, and in particular by one or
more processor of the database system.

In block 901, one or more properties of an object stored in
the database system are received. The properties can be
received from administrators of the database system, or from
users of the database system (which may be an administrator
of'a customer organization). The properties can be records or
users, and can include any of the fields of the object that are
stored in the database system. Examples of properties of a
record include: an owner of the record, a user that converted
the record from one record type to another record type,
whether the first user has viewed the record, and a time the
first user viewed the record. Examples of properties of a user
include: which organization (tenant) the user is associated
with, the second user’s position in the same organization, and
which other users the user had emailed or worked with on
projects.

In block 902, the database system receives one or more
criteria about which users are to automatically follow the
object. Examples of the criteria can include: an owner or
creator of a record is to follow the record, subordinates of an
owner or creator of a record are to follow the record, and a
user is to follow his/her manager, the user’s peers, other users

10

15

20

25

30

35

40

45

50

55

60

65

32

in the same business group as the user, and other users that the
user has emailed or worked with on a project. The criteria can
be specific to a user or group of users (e.g., users of a tenant).

In block 903, the database system determines whether the
one or more properties of the object satisfy the one or more
criteria for a first user. In one implementation, this determi-
nation can occur by first obtaining the criteria and then deter-
mining objects that satisfy the criteria. The determination can
occur periodically, at time of creation of an object, or at other
times.

In block 904, if the criteria are satisfied, the object is
associated with the first user. The association can be in a list
that stores information as to what objects are being followed
by the first user. User subscription table 940 is an example of
such a list. In one implementation, the one or more criteria are
satisfied if one property satisfies at least one criterion. Thus, if
the criteria are that a user follows his’her manager and the
object is the user’s manager, then the first user will follow the
object.

In one implementation, a user can also be automatically
unsubscribed, e.g., if a certain action happens.

The action could be a change in the user’s position within
the organization, e.g., a demotion or becoming a contractor.
As another example, if a case gets closed, then users follow-
ing the case may be automatically unsubscribed.

IX. Adding Items to a Feed

As described above, a feed includes feed items, which
include feed tracked updates and messages, as defined herein.
Various feeds can be generated. For example, a feed can be
generated about a record or about a user. Then, users can view
these feeds. A user can separately view a feed of a record or
user, e.g., by going to a home page for the user or the record.
As described above, a user can also follow another user or
record and receive the feed items of those feeds through a
separate feed application. The feed application can provide
each of the feeds that a user is following and, in some
examples, can combine various feeds in a single information
feed.

A feed generator can refer to any software program running
on a processor or a dedicated processor (or combination
thereof) that can generate feed items (e.g., feed tracked
updates or messages) and combine them into a feed. In one
implementation, the feed generator can generate a feed item
by receiving a feed tracked update or message, identifying
what feeds the item should be added to, and adding the feed.
Adding the feed can include adding additional information
(metadata) to the feed tracked update or message (e.g., adding
a document, sender of message, a determined importance,
etc.). The feed generator can also check to make sure that no
one sees feed tracked updates for data that they don’t have
access 1o see (e.g., according to sharing rules). A feed gen-
erator can run at various times to pre-compute feeds or to
compute them dynamically, or combinations thereof.

In one implementation, processor 417 in FIG. 4 can iden-
tify an event that meets criteria for a feed tracked update, and
then generate the feed tracked update. Processor 417 can also
identify a message. For example, an application interface can
have certain mechanisms for submitting a message (e.g.,
“submit” buttons on a profile page, detail page of a record,
“comment” button on post), and use of these mechanisms can
be used to identity a message to be added to a table used to
create a feed or added directly to a list of feed items ready for
display.

A. Adding Items to a Pre-Computed Feed

In some implementations, a feed of feed items is created
before a user requests the feed. Such an implementation can
run fast, but have high overall costs for storage. In one imple-

US 9,241,017 B2

33

mentation, once a profile feed or a record feed has been
created, a feed item (messages and feed tracked updates) can
be added to the feed. The feed can exist in the database system
in avariety of ways, such as a related list. The feed can include
mechanisms to remove items as well as add them.

As described above, a news feed can be an aggregated feed
of all the record feeds and profile feeds to which a user has
subscribed. The news feed can be provided on the home page
of'the subscribing user. Therefore, a news feed can be created
by and exist for a particular user. For example, a user can
subscribe to receive entity feeds of certain records that are of
interest to the user, and to receive profile feeds of people that
are of interest (e.g., people on a same team, that work for the
user, are a boss of the user, etc.). A news feed can tell a user
about all the actions across all the records (and people) whom
have explicitly (or implicitly) been subscribed to via the sub-
scriptions center (described above).

In one implementation, only one instance of each feed
tracked update is shown on a user’s news feed, even if the feed
tracked update is published in multiple entities to which the
user is subscribed. In one aspect, there may be delays in
publishing news articles. For example, the delay may be due
to queued up messages for asynchronous entity feed tracked
update persistence. Different feeds may have different delays
(e.g., delay for new feeds, but none of profile and entity
feeds). In another implementation, certain feed tracked
updates regarding a subscribed profile feed or an entity feed
are not shown because the user is not allowed access, e.g., due
to sharing rules (which restrict which users can see which
data). Also, in one implementation, data of the record that has
been updated (which includes creation) can be provided in the
feed (e.g., a file or updated value of a feed can be added as a
flash rendition).

B. Dynamically Generating Feeds

Insomeimplementations, a feed generator can generate the
feed items dynamically when a user requests to see a particu-
lar feed, e.g., a profile feed, entity feed, or the user’s news
feed. In one implementation, the most recent feed items (e.g.,
top 50) are generated first. In one aspect, the other feed items
can be generated as a background process, e.g., not synchro-
nously with the request to view the feed. However, since the
background process is likely to complete before a user gets to
the next 50 feed items, the feed generation may appear syn-
chronous. In another aspect, the most recent feed items may
or may not include comments, e.g., that are tied to feed
tracked updates or posts.

In one implementation, the feed generator can query the
appropriate subset of tables shown in FIG. 9A and/or other
tables as necessary, to generate the feed items for display. For
example, the feed generator can query the event history table
910 for the updates that occurred for a particular record. The
1D of the particular record can be matched against the ID of
the record. In one implementation, changes to a whole set of
records can be stored in one table. The feed generator can also
query for status updates, posts, and comments, each of which
can be stored in different parts of a record or in separate
tables, as shown in FIG. 9A. What gets recorded in the entity
event history table (as well as what is displayed) can be
controlled by a feed settings page in setup, which can be
configurable by an administrator and can be the same for the
entire organization, as is described above for custom feeds.

In one implementation, there can be two feed generators.
For example, one generator can generate the record and pro-
file feeds and another generator can generate news feeds. For
the former, the feed generator can query identifiers of the
record or the user profile. For the latter, the news feed gen-
erator can query the subscribed profile feeds and record feeds,

10

15

20

25

30

35

40

45

50

55

60

65

34

e.g., user subscription table 940. In one implementation, the
feed generator looks at a person’s subscription center to
decide which feeds to query for and return a list of feed items
for the user. The list can be de-duped, e.g., by looking at the
event number and values for the respective table, such as field
name or ID, comment ID, or other information.

C. Adding Information to Feed Tracked Update Tables

FIG. 10 shows a flowchart of an example of a method 1000
for saving information to feed tracking tables, performed in
accordance with some implementations. In one implementa-
tion, some of the blocks may be performed regardless of
whether a specific event or part of an event (e.g., only one field
of an update is being tracked) is being tracked. In various
implementations, a processor or set of processors (hardwired
or programmed) can perform method 1000 and any other
method described herein.

In block 1010, data indicative of an event is received. The
data may have a particular identifier that specifies the event.
For example, there may be a particular identifier for a field
update. In another implementation, the transaction may be
investigated for keywords identifying the event (e.g., terms in
a query indicating a close, change field, or create operations).

In block 1020, it is determined whether the event is being
tracked for inclusion into feed tracked update tables. The
determination of what is being tracked can be based on a
tenant’s configuration as described above. In one aspect, the
event has an actor (person performing an event), and an object
of'the event (e.g., record or user profile being changed).

In block 1030, the event is written to an event history table
(e.g., table 910). In one implementation, this feed tracking
operation can be performed in the same transaction that per-
forms a save operation for updating a record. In another
implementation, a transaction includes at least two roundtrip
database operations, with one roundtrip being the database
save (write), and the second database operation being the
saving of the update in the feed tracked update table. In one
implementation, the event history table is chronological. In
another implementation, if user A posts on user B’s profile,
then user A is under the “created by” 913 and user B is under
the object ID 912.

In block 1040, a field change table (e.g., field change table
920) can be updated with an entry having the event identifier
and fields that were changed in the update. In one implemen-
tation, the field change table is a child table of the event
history table. This table can include information about each of
the fields that are changed. For example, for an event that
changes the name and balance for an account record, an entry
can have the event identifier, the old and new name, and the
old and new balance. Alternatively, each field change can be
in a different row with the same event identifier. The field
name or ID can also be included to determine which field the
values are associated.

In block 1050, when the event is a post, a post table (e.g.,
post table 950) can be updated with an entry having the event
identifier and text of the post. In one implementation, the field
change table is a child table of the event history table. In
another implementation, the text can be identified in the trans-
action (e.g., a query command), stripped out, and put into the
entry at the appropriate column. The various tables described
herein can be combined or separated in various ways. For
example, the post table and the field change table may be part
of the same table or distinct tables, or may include overlap-
ping portions of data.

In block 1060, a comment is received for an event and the
comment is added to a comment table (e.g., comment table
930). The comment could be for a post or an update of a
record, from which a feed tracked update can be generated for

US 9,241,017 B2

35

display. In one implementation, the text can be identified in
the transaction (e.g., a query command), stripped out, and put
into the entry at the appropriate column.

D. Reading Information from Feed Tracked Update Tables

FIG. 11 shows a flowchart of an example of a method 1100
for reading a feed item as part of generating a feed for display,
performed in accordance with some implementations. In one
implementation, the feed item may be read as part of creating
a feed for a record.

In block 1110, a query is received for an events history
table (e.g., event history table 910) for events related to a
particular record. In one implementation, the query includes
an identifier of the record for which the feed is being
requested. In various implementations, the query may be
initiated from a detail page of the record, a home page of a
user requesting the record feed, or from a listing of different
records (e.g., obtained from a search or from browsing).

In block 1120, the user’s security level can be checked to
determine if the user can view the record feed. Typically, a
user can view a record feed, if the user can access the record.
This security check can be performed in various ways. In one
implementation, a first table is checked to see if the user has
a classification (e.g., a security level that allows him to view
records of the given type). In another implementation, a sec-
ond table is checked to see if the user is allowed to see the
specific record. The first table can be checked before the
second table, and both tables can be different sections of a
same table. If the user has requested the feed from the detail
page of the record, one implementation can skip the security
level check for the record since the check was already done
when the user requested to view the detail page.

In one implementation, a security check is determined
upon each request to view the record feed. Thus, whether or
not a feed item is displayed to a user is determined based on
access rights, e.g., when the user requests to see a feed of a
record or a news feed of all the objects the user is following.
In this manner, if a user’s security changes, a feed automati-
cally adapts to the user’s security level when it is changed. In
another implementation, a feed can be computed before being
requested and a subsequent security check can be made to
determine whether the person still has access right to view the
feed items. The security (access) check may be at the field
level, as well as at the record level.

Inblock 1130, if the user can access the record, a field level
security table can be checked to determine whether the user
can see particular fields. In one implementation, only those
fields are displayed to the user. Alternatively, a subset of those
the user has access to is displayed. The field level security
check may optionally be performed at the same time and even
using the same operation as the record level check. In addi-
tion, the record type check may also be performed at this time.
If the user can only see certain fields, then any feed items
related to those fields (e.g., as determined from field change
table 920) can be removed from the feed being displayed.

In block 1140, the feed items that the user has access to are
displayed. In one implementation, a predetermined number
(e.g., 20) of feed items are displayed at a time. The method
can display the first 20 feed items that are found to be read-
able, and then determine others while the user is viewing the
first 20. In another implementation, the other feed items are
not determined until the user requests to see them, e.g., by
activating a see more link.

FIG. 12 shows a flowchart of an example of a method 1200
for reading a feed item of a profile feed for display, performed
in accordance with some implementations. In one implemen-
tation, the query includes an identifier of the user profile feed
that is being requested. Certain blocks may be optional, as is

10

15

20

25

30

35

40

45

50

55

60

65

36

also true for other methods described herein. For example,
security checks may not be performed.

In block 1210, a query is directed to an event history table
(e.g., event history table 910) for events having a first user as
the actor of the event (e.g., creation of an account) or on which
the event occurred (e.g., a postto the user’s profile). In various
implementations, the query may be initiated by a second user
from the user’s profile page, a home page of a user requesting
the profile feed (e.g., from a list of users being followed), or
from a listing of different users (e.g., obtained from a search
or from browsing). Various mechanisms for determining
aspects of events and obtaining information from tables can
be the same across any of the methods described herein.

In block 1220, a security check may also be performed on
whether the second user can see the first user’s profile. In one
implementation any user can see the profile of another user of
the same tenant, and block 1220 is optional.

In block 1230, a security (access) check can be performed
for the feed tracked updates based on record types, records,
and/or fields, as well security checks for messages. In one
implementation, only the feed tracked updates related to
records that the person has updated are the ones that need
security check as the feed items about the user are readable by
any user of the same tenant. Users of other tenants are not
navigable, and thus security can be enforced at a tenant level.
In another implementation, messages can be checked for
keywords or links to a record or field that the second user does
not have access.

As users can have different security classifications, it is
important that a user with a low-level security cannot see
changes to records that have been performed by a user with
high-level security. In one implementation, each feed item
can be checked and then the viewable results displayed, but
this can be inefficient. For example, such a security check
may take a long time, and the second user would like to get
some results sooner rather than later. The following blocks
illustrate one implementation of how security might be
checked for a first user that has a lot of feed items, but the
second user cannot see most of them. This implementation
can be used for all situations, but can be effective in the above
situation.

In block 1231, a predetermined number of entries are
retrieved from the event history table (e.g., starting from the
most recent, which may be determined from the event iden-
tifier). The retrieved entries may just be ones that match the
user 1D of the query. In one implementation, entries are
checked to find the entries that are associated with the user
and with a record (i.e. not just posts to the user account). In
another implementation, those entries associated with the
user are allowed to be viewed, e.g., because the second user
can see the profile of the first user as determined in block
1220.

In block 1232, the record identifiers are organized by type
and the type is checked on whether the second user can see the
record types. Other checks such as whether a record was
manually shared (e.g., by the owner) can also be performed.
In one implementation, the queries for the different types can
be done in parallel.

Inblock 1233, if a user can see the record type, then a check
can be performed on the specific record. In one implementa-
tion, if a user can see a record type, then the user can see all of
the records of that type, and so this block can be skipped. In
another implementation, the sharing model can account for
whether a user below the second user (e.g., the second user is
amanager) can see the record. In such an implementation, the

US 9,241,017 B2

37

second user may see such a record. In one implementation, if
a user cannot see a specific record, then comments on that
record are also not viewable.

In block 1234, field level sharing rules can be used to
determine whether the second user can see information about
an update or value of certain fields. In one implementation,
messages can be analyzed to determine if reference to a
particular field name is made. If so, then field level security
can be applied to the messages.

Inblock 1280, blocks 1231-1234 are repeated until a stop-
ping criterion is met. In one implementation, the stopping
criteria may be when a maximum number (e.g., 100) of
entries that are viewable have been identified. In another
implementation, the stopping criteria can be that a maximum
number (e.g., 500) of entries from the entity feed tracked
update table have been analyzed, regardless of whether the
entries are viewable or not.

In one implementation, a news feed can be generated as a
combination of the profile feeds and the entity feeds, e.g., as
described above. In one implementation, a list of records and
user profiles for the queries in blocks 1110 and 1210 can be
obtained from user subscription table 940. In one implemen-
tation, there is a maximum number of objects that can be
followed.

E. Partial Pre-Computing of Items for a Feed

FIG. 13 shows a flowchart of an example of a method 1300
of storing event information for efficient generation of feed
items to display in a feed, performed in accordance with some
implementations. In various implementations, method 1300
can be performed each time an event is written to the event
history table, or periodically based on some other criteria
(e.g., every minute, after five updates have been made, etc.).

In block 1310, data indicative of an event is received. The
data may be the same and identified in the same way as
described for block 1010. The event may be written to an
event history table (e.g., table 910).

In block 1320, the object(s) associated with the event are
identified. In various implementations, the object may be
identified by according to various criteria, such as the record
being changed, the user changing the record, a user posting a
message, and a user whose profile the message is being posted
to.

In block 1330, the users following the event are deter-
mined. In one implementation, one or more objects that are
associated with the event are used to determine the users
following the event. In one implementation, a subscription
table (e.g., table 940) can be used to find the identified objects.
The entries of the identified objects can contain an identifier
(e.g., user ID 941) of each the users following the object

In block 1340, the event and the source of the event, e.g., a
record (for a record update) or a posting user (for a user-
generated post) are written to a news feed table along with an
event identifier. In one implementation, such information is
added as a separate entry into the news feed table along with
the event ID. In another implementation, each of the events
for a user is added as a new column for the row of the user. In
yet another implementation, more columns (e.g., columns
from the other tables) can be added.

News feed table 960 shows an example of such a table with
user ID 961 and event ID or pointer 962. The table can be
organized in any manner. One difference from event history
table 910 is that one event can have multiple entries (one for
each subscriber) in the news feed table 960. In one implemen-
tation, all of the entries for a same user are grouped together,
e.g., as shown. The user U819 is shown as following events
E37 and E90, and thus any of the individual feed items result-
ing from those events. In another implementation, any new

10

15

20

25

30

35

40

45

50

55

60

65

38
entries are added at the end of the table. Thus, all of the
followers for a new event can be added as a group. In such an
implementation, the event IDs would generally be grouped
together in the table. Of course, the table can be sorted in any
suitable manner.

In an implementation, if the number of users is small, then
the feed items in one or more of the tables may be written as
part of the same write transaction. In one implementation, the
determination of small depends on the number of updates
performed for the event (e.g., a maximum number of update
operations may be allowed), and if more operations are per-
formed, then the addition of the feed items is performed. In
one aspect, the number of operations can be counted by the
number of rows to be updated, including the rows of the
record (which depends on the update event), and the rows of
the feed tracked update tables, which can depend on the
number of followers. In another implementation, if the num-
ber of users is large, the rest of the feed items can be created
by batch. In one implementation, the feed items are written as
part of a different transaction, i.e., by batch job.

In one implementation, security checks can be performed
before an entry is added to the news feed table 960. In this
manner, security checks can be performed during batch jobs
and may not have to be performed at the time of requesting a
news feed. In one implementation, the event can be analyzed
and if access is not allowed to a feed item of the event, then an
entry is not added. In one aspect, multiple feed items for a
same user may not result from a same event (e.g., by how an
event is defined in table 910), and thus there is no concern
about a user missing a feed item that he/she should be able to
view.

In block 1350, a request for a news feed is received from a
user. In one implementation, the request is obtained when a
user navigates to the user’s home page. In another implemen-
tation, the user selects a table, link, or other page item that
causes the request to be sent.

In block 1360, the news feed table and other tables are
accessed to provide displayable feed items of the news feed.
The news feed can then be displayed. In one implementation,
the news feed table can then be joined with the event history
table to determine the feed items. For example, the news feed
table 960 can be searched for entries with a particular user ID.
These entries can be used to identify event entries in event
history table 910, and the proper information from any child
tables can be retrieved. The feed items (e.g., feed tracked
updates and messages) can then be generated for display.

In one implementation, the most recent feed items (e.g.,
100 most recent) are determined first. The other feed items
may then be determined in a batch process. Thus, the feed
item that a user is most likely to view can come up first, and
the user may not recognize that the other feed items are being
done in batch. In one implementation, the most recent feed
items can be gauged by the event identifiers. In another imple-
mentation, the feed items with a highest importance level can
be displayed first. The highest importance being determined
by one or more criteria, such as, who posted the feed item,
how recently, how related to other feed items, etc.

In one implementation where the user subscription table
940 is used to dynamically create a news feed, the query
would search the subscription table, and then use the object
IDs to search the event history table (one search for each
object the user is following). Thus, the query for the news feed
can be proportional to the number of objects that one was
subscribing to. The news feed table allows the intermediate
block of determining the object IDs to be done at an earlier
stage so that the relevant events are already known. Thus, the

US 9,241,017 B2

39

determination of the feed is no longer proportional to the
number of object being followed.

In some implementations, a news feed table can include a
pointer (as opposed to an event identifier) to the event history
table for each event that is being followed by the user. In this
manner, the event entries can immediately be retrieved with-
out having to perform a search on the event history table.
Security checks can be made at this time, and the text for the
feed tracked updates can be generated.

X. Display of a Feed

Feeds include messages and feed tracked updates and can
show up in many places in an application interface with the
database system. In one implementation, feeds can be scoped
to the context of the page on which they are being displayed.
For example, how a feed tracked update is presented can vary
depending on which page it is being displayed (e.g., in news
feeds, on a detail page of a record, and even based on how the
user ended up at a particular page). In another implementa-
tion, only a finite number of feed items are displayed (e.g.,
50). In one implementation, there can be a limit specifically
on the number of feed tracked updates or messages displayed.
Alternatively, the limit can be applied to particular types of
feed tracked updates or messages. For example, only the most
recent changes (e.g., 5 most recent) for a field may be dis-
played. Also, the number of fields for which changes are
displayed can also be limited. Such limits can also be placed
on profile feeds and news feeds. In one implementation, feed
items may also be subject to certain filtering criteria before
being displayed, e.g., as described below.

XI. Filtering and Searching Feeds

It can be possible that a user subscribes to many users and
records, which can cause a user’s news feed to be very long
and include many feed items. In such instances, it can be
difficult for the user to read every feed item, and thus some
important or interesting feed items may not be read. In some
implementations, filters may be used to determine which feed
items are added to a feed or displayed in the feed.

FIG. 14 shows a flowchart of an example of a method 1400
for creating a custom feed for users of'a database system using
filtering criteria, performed in accordance with some imple-
mentations. Any of the following blocks can be performed
wholly or partially with the database system, and in particular
by one or more processor of the database system.

In block 1410, one or more criteria specitying which feed
items are to be displayed to a first user are received from a
tenant. In one implementation, the criteria specify which
items to add to the custom feed. For example, the criteria
could specify to only include feed items for certain fields of a
record, messages including certain keywords, and other cri-
teria mentioned herein. In another implementation, the crite-
ria specify which items to remove from the custom feed. For
example, the criteria could specify not to include feed items
about certain fields or including certain keywords.

In block 1420, the database system identifies feed items of
one or more selected objects that match the criteria. The feed
items can be stored in the database, e.g., in one or more of the
tables of FIG. 9A. In one implementation, the one or more
selected objects are the objects that the first user is following.
Inanother implementation, the one or more selected objects is
a single record whose record feed the first user is requesting.

In block 1430, the feed items that match the criteria are
displayed to the first user in the custom feed. The generation
of text for a feed tracked update can occur after the identifi-
cation of the feed items (e.g., data for a field change) and
before the display of the final version of the feed item.

In one implementation, the criteria are received before a
feed item is created. In another implementation, the criteria

10

25

30

40

45

55

40

are received from the first user. In one aspect, the criteria may
only be used for determining feeds to display to the first user.
In yet another implementation, the criteria are received from
a first tenant and apply to all of the users of the first tenant.
Also, in an implementation where a plurality of criteria are
specified, the criteria may be satisfied for a feed item if one
criterion is satisfied.

Some implementations can provide mechanisms to search
for feed items of interest. For example, the feed items can be
searched by keyword, e.g., as entered by a user. As another
example, a tab (or other selection device) can show feed items
about or from a particular user. In one implementation, only
messages (or even just comments) from a particular user can
be selected. Besides searching for feed items that match cri-
teria, one also could search for a particular feed item.

XII. Interacting with Components Across Different
Domains

FIG. 15 shows a flowchart of an example of a computer
implemented method 1500 for interacting with components
across different domains in a single user interface in an online
social network, performed in accordance with some imple-
mentations. The method 1500 may be described with refer-
ence to FIG. 17. At block 1504, a computing device or any
number of computing devices cooperating to perform the
method 1500 may provide data to generate a user interface
including a first component and a second component. The
first component exposes content from a first database system
at a first network domain, and the second component exposes
content from a second database system at a second network
domain. In some implementations, the first database system is
outside a multi-tenant database environment and the second
database system is within the multi-tenant database environ-
ment. In other implementations, the first database system and
the second database system are within the multi-tenant data-
base environment.

The first component and the second component may be
associated with different domains, but displayed in the same
user interface. Different domains may refer to different server
domains. In other words, different domains may refer to the
fact that the first component and the second component are
hosted on different database systems. Establishing commu-
nication between components hosted on different database
systems and displayed in a single user interface so that the
components appear to be part of a single application can be
challenging.

In some implementations, the first component may load an
application hosted on a database system outside of the on-
demand service environment. For example, the first compo-
nent can be hosted on a third-party platform, including plat-
form services such as site.com™, Heroku™, force.com®,
and AppExchange®. The first component can be configured
to expose information from the database system, which can
be outside the on-demand service environment. Such infor-
mation can be stored as a collection of objects, such as a
collection of tables representing data objects. The database
system can include a searchable database of a plurality of data
sources, such as a plurality of articles. Other data sources can
include, but is not limited to, a plurality of products, services,
forms, map locations, and websites, among other data
sources.

In some implementations, the second component may load
an application, such as a service cloud application, provided
from a data service provider, such as salesforce.com®. The
service cloud application may be hosted on a database system
at a first network domain, such as www.salesforce.com,
which is within the on-demand service environment.

US 9,241,017 B2

41

In some implementations, at least one of the components,
such as the second component, may be part of a customized
graphical user interface created from a customization tool. A
partner, customer, or organization may customize the visual
representation of the component according to their prefer-
ences using a customization tool, such as Visualforce. Visu-
alforce components may be hosted on their own database
systems independent from other database systems. Visual-
force allows users to build custom user interfaces that can be
hosted natively by an on-demand service environment.

The user interface, including the first component and the
second component, may provide an organized interface for
interacting with various entities, including interactions with
customers. In some instances, the user interface can provide a
streamlined way of creating, managing, and viewing cases for
customer support. The user interface can be customized to
utilize an API to meet the needs of the customer base. In some
implementations, the user interface can be customized using
a customization tool such as Visualforce. As such, a partner,
customer, or organization can customize the layout and
appearance of a page for handling customer inquiries accord-
ing to their preferences.

In some implementations, the second component may
include a publisher and an information feed. The publisher
may be configured to publish information to the information
feed. The publisher can include one or more data fields for
submitting information to the information feed. The informa-
tion feed can display changes to a particular data object,
including feed tracked updates and comments. The publisher
and the information feed may be configured in its layout and
appearance using a customization tool such as Visualforce.

FIG. 17 shows a diagram of an example of a client device
1700 displaying a user interface with components 1710 and
1720 in communication with database systems 1711 and
1721 across domains, according to some implementations.
The client device 1700 can include, for example, a handheld
computing device, a mobile phone, a laptop computer, a work
station, and/or a network of such computing devices. The
client device 1700 can display a user interface with at least
two frames, where the frames are separate from one another.
The separate frames in the user interface include a first com-
ponent 1710 and a second component 1720. The first compo-
nent exposes content from a first database system 1711, and
the second component 1720 exposes content from a second
database system 1721. The first database system 1711 and the
second database system 1721 are separate from one another.
In some implementations, the first database system 1711 may
be outside of a multi-tenant database environment at a first
network domain while the second database system 1721 may
be part of the multi-tenant database environment at a second
network domain.

Returning to FIG. 15, at block 1508, a first interaction with
the first component is received at the computing device. The
first interaction can include a user input regarding the exposed
content in the first component. The exposed content can
include, for example, a plurality of data sources. A data source
can include any representation of data. For example, a data
source can be represented as a row in a table for a data object.
The first interaction with the first component can include
performing an operation with reference to the first compo-
nent, such as requesting to attach a data source, embed a data
source, view a data source, search for a data source, download
a data source, upload a data source, record a data source, and
email a data source, among many other operations. For
example, a knowledge component can populate the body of
an email composer component with the contents of a knowl-
edge article to be sent to a customer. In another example, a

10

25

40

45

55

42

third party application like Inquira® provided by Oracle can
be surfaced as a component, which leverages an API to popu-
late a displayed box of a Twitter® publisher on a case feed
with a solution to a customer problem that originated on the
Twitter® social networking service. In some implementa-
tions, each of the data sources can include a first identifier
(first ID). The first ID can reference a data source stored in the
first database system.

In FIG. 17, interactions with exposed content in the first
component 1710 is communicated to a server 1730. The
interaction can perform an operation on parts of the exposed
content in the first component 1710. The operation can cause
one or more data sources to be identified in the first database
system 1711, which can then render the one or more data
sources for storage in the server 1730. The one or more data
sources are rendered and stored in a suitable format in the
server 1730 so that they can be retrieved via the second
component 1720.

Returning to FIG. 15, at block 1512, a reference in the
second component is provided in the user interface, where the
reference includes information related to the first interaction
with the first component. The reference may include metadata
related to one or more data sources in the first component. In
some implementations, the reference may be exposed in the
second component as an attachment, a link, an image, a video,
or other form representing the data source. In some imple-
mentations, the reference includes instructions for retrieving
the data source.

The reference may be enabled by an application program-
ming interface (API), such as a cross-domain API. The API
may be provided by an entity, such as a data service provider
like salesforce.com®. The API may enable integration of the
first component as hosted on the first database system into the
on-demand service environment. The API may consist ofa set
of tools and Javascript® APIs that enables integration of
database systems at network domains outside the on-demand
service environment. The API may consist of pre-defined
instructions provided in, for example, Javascript®, Java®,
Apex™, or any other programming language for implement-
ing the reference from the first component into the second
component. The API provides a communication bridge so
that the first component can directly communicate with the
second component, and vice versa, in a browser page.

When a user interacts with the first component, the first
component utilizes the API to communicate with the first
database system to perform operations with respect to the first
database system. In addition, when the user interacts with the
first component, the first component also utilizes the API to
communicate with the second component. The second com-
ponent directly interfaces with the API to cause the second
component to display a reference having information related
to the first interaction. As the API communicates with the first
component, the API links back information from the first
component to the browser page. Such information can be
rendered into the second component in the form of the refer-
ence. By interfacing with the API, this communication with
the second component can be performed without having to
operate in separate windows or without having to refresh the
browser page. Therefore, interactions with the first compo-
nent to perform operations in the second component, and vice
versa, may occur seamlessly via the API. This can make the
user interface appear to function as a single page operating a
single application. In other words, the cross-domain API
facilitates interaction with separate applications at separate
domains without requiring the additional latency or compu-
tational burdens of using a proxy or other type of server
communication.

US 9,241,017 B2

43

In FIG. 17, the server 1730 is in communication with the
first component 1710 and the second component 1720 so that
interactions in the first component 1710 to affect what is
presented in the second component 1720. Put another way,
any interaction in the first component 1710 can be commu-
nicated to the second component 1720 even though the com-
ponents are hosted on different database systems at different
domains. The communication to the second component 1720
can be presented in the form of a reference. In some imple-
mentations, the reference may be exposed in the second com-
ponent as an attachment, a link, an image, a video, or other
form representing the data source. Each of the first compo-
nent 1710 and the second component 1720 interfaces with an
API to communicate with each other. This occurs without
refreshing the first component 1710 or the second component
1720.

Returning to FIG. 15, at block 1516, a second interaction
associated with the second component regarding the refer-
ence is received at the computing device. The second inter-
action can include a user input regarding the second compo-
nent and the reference. The second interaction can include,
for example, publishing second information to an information
feed and/or sending a network transmission of second infor-
mation. Thus, the reference can provide the desired data
source to an information feed and/or customers. The second
interaction can include performing an operation with respect
to the reference. This can include using the reference to
retrieve the data source, to send the data source, to publish the
data source, to edit the data source, to create a file with the
data source, to convert the data source, and to remove the data
source, among other operations.

In FIG. 15, in one example, an app server 288 in the
on-demand service environment 200 of FIGS. 2A and 2B
includes one or more processors configured to perform part or
all ofblocks 1504-1516. In other instances, additional servers
cooperate with app server 288 to perform the blocks. User
input data can be received by a server over a data network
from a user operating a user system 12 as shown in FIGS. 1A
and 1B. In other instances, such data is received from a proxy
server on behalf of a user or other source. Various implemen-
tations of method 1500 are possible, such that any of the
servers described above with reference to FIG. 2B or other
computing devices disclosed herein can be configured to
receive and process user inputs and information updates in
accordance with method 1500 or any of the other methods
described below.

In an example in the method 1500, user input data provided
to a display device is transmitted from a server such as app
server 288 over network 14 to a user system 12 of FIGS. 1A
and 1B. In this example, the display device is one component
of'the user system 12, which includes a processor configured
to execute a web browser program stored on user system 12 to
output a graphical presentation of the feed on the display
device, for instance, GUI. In other examples, the data pro-
vided to the display device at block 1516 is generated locally
at user system 12. One or more of the blocks 1504-1516 as
described above can also be performed at user system 12 as an
alternative to being performed at one or more servers in an
online social network.

In FIG. 17, interactions with the exposed content in the
second component 1720 and the reference is communicated
to the server 1730. In some implementations, the reference
contains instructions for retrieving the one or more data
sources as rendered and stored in the server 1730. The inter-
action can cause the one or more data sources to be retrieved
and sent via a network transmission through a network 1740.
For example, the interaction with the second component 1720

10

15

20

25

30

35

40

45

50

55

60

44

can send an email attaching the one or more data sources from
the server 1730 through the network 1740 to one or more
customers.

FIG. 16 shows a flowchart of an example of a computer
implemented method 1600 for interacting with components
across different domains in a single user interface in an online
social network, performed in accordance with some other
implementations. FIG. 16 is described with reference to
FIGS. 18-20. At block 1604, one or more computing devices
cooperating to perform the method 1600 provide data to
generate a user interface including a first component and a
second component, as generally described at block 1504 of
the method 1500. The first component exposes content from
a first database system at a first network domain, and the
second component exposes content from a second database
system at a second network domain.

The first component can be configured to load applications
from a first set of safe network domains. The computing
device can identify one or more trusted domains such that it is
acceptable for the first component to expose content from the
first database system. In some implementations, the first set of
safe network domains may be limited to a particular group of
domains, such as those identified by a data service provider.

In one exemplary example, the first database system is a
knowledge articles database. Each knowledge article (KA)
contains content and metadata as stored and indexed in a data
container. In some implementations, a plurality of KAs can be
categorized into separate data categories. Each KA is
assigned to a data category to best reflect the content of the
KA. For example, a typical data category can include one or
more of a name of a product, level of access, a topic, etc. The
level of access can refer to whether a KA in the data category
is restricted to only some types of users. The topic can refer to
the information about the primary objective of the KA. In
some implementations, a KA can be categorized into more
than one data group. Other classification schemes can orga-
nize KAs by format, including KAs on frequently asked ques-
tions (FAQs), offers, promotions, and the like. Appropriate
search filters may be provided to enable efficient searches by
data categories.

Each KA may have different versions of itself. For
example, a KA may have an English language version, a
French language version, a German language version, and
versions in other foreign languages. In some implementa-
tions, changes made to the content of one version do not
automatically get reflected in the other versions. However, in
some implementations, reassignments in data categories may
be automatically reflected in some or all the versions. Each
KA version may have metadata to reflect auditing informa-
tion, monitoring information, previous actions, and previous
actors who acted upon the KA version. A description of
managing a database of KAs can be described in U.S. appli-
cation Ser. No. 13/100,767 to Pin et al. and U.S. Application
Publication No. 2011/0276535 to Pin et al., each of which is
incorporated by reference herein in its entirety and for all
purposes.

Each KA version may be represented by a row in a table for
a data object, and each row may have multiple columns asso-
ciated therewith. The columns can include data such as an
organization ID, owner information, title, publication status,
language, URL, data category, article type, etc. In addition,
one of the columns can also include an article ID for identi-
fying the article in the knowledge articles database. A par-
ticular KA may be retrieved with reference to its article ID.

In some implementations, the second component is a GUI
that includes a publisher and an information feed. In one
exemplary example, the second component is a main page for

US 9,241,017 B2

45

an email response form and a case feed. Such a configuration
may be used to communicate with customers regarding a
case. In other words, the second component may load an
application, such as a service cloud console application, from
a second database system at a second network domain. The
second network domain may be controlled by a data service
provider, such as salesforce.com®, and the first network
domain may be controlled by an entity different from the data
service provider.

In providing an interface for communicating with custom-
ers, a customer may create a case by sending a message via a
customer service website. Rather than replying to the cus-
tomer via the customer service website, an agent may directly
respond to the customer using the publisher. Sending a cus-
tomer an answer via the publisher may also update the second
database system, which may include attaching the answer as
an object in the second database system.

FIG. 18 shows an example of a user interface 1800 with a
publisher 1802 and an information feed 1806, according to
some implementations. The publisher 1802 is an interface
that allows a user to publish information to the information
feed 1806. The publisher 1802 may provide an interface
displaying any one of a variety of designs or layouts, which
can be programmed according to different preferences or
requirements. For example, the interface of the publisher
1802 may vary depending on whether the publisher 1802 is
being displayed on a web page, on a mobile device, on an
automobile display, etc.

As discussed earlier herein, the interface may be designed
using a customization tool such as Visualforce. The appear-
ance, design, and layout of the publisher 1802 and the infor-
mation feed 1806 may be provided programmatically using
an API. In some implementations, a user can configure some
aspects of the appearance, design, and layout of the publisher
1802 and the information feed 1806 declaratively using the
API. Specifically, a user may be able to select one or more
data fields to be provided in the publisher 1802. The user may
be able to select from a plurality of data fields, such as email
data fields “To”, “From”, “CC”, “BCC”, “Subject”, “Body”,
etc. In some implementations, a user may be able to pre-
populate and pre-define the information that is provided in
any of the data fields.

The publisher 1802 may include a plurality of publisher
actions 1808, as shown in FIG. 18. Each of the publisher
actions 1808 may be in the form of GUI buttons, links, tabs,
channels, or menu items. Publisher actions 1808 may be
configured to perform operations with reference to a corre-
sponding database system. Examples of publisher actions
1808 as shown in FIG. 18 include emailing a customer, log-
ging a call, and answering inquiries through a web portal.
Other examples of publisher actions 1808 can include creat-
ing a task, updating a task, creating an opportunity, updating
an opportunity, creating a contact, updating a contact, creat-
ing a case, updating a case, creating an account, updating an
account, creating an event, updating an event, logging a task,
logging a bug, approving a workflow, rejecting a workflow,
writing a note, creating a poll, viewing case information, and
closing a case, among other actions. Selecting one of the
publisher actions 1808 may cause the publisher 1802 to dis-
play an interface specific to the selected publisher action
1808, such as a form with one or more data fields for trans-
mitting information.

If a user selects the Email Customer publisher action, the
publisher 1802 displays an email response form. This allows
a user to fill in a text box and send a message directly to a
customer via email. If a user selects the Log Call publisher
action, the user can log a call with a customer by creating

10

15

20

25

30

35

40

45

50

55

60

65

46

and/or saving an audio recording of the call, creating a text
transcript, or creating a summary of the call in a text box. If a
user selects the Portal Answer publisher action, the user may
provide an answer to a question from a customer that was
submitted via a customer service website. Sending an answer
to the customer in this manner sends a response through the
customer service website without having to navigate to the
customer service website itself.

The information feed 1806 can display a plurality of feed
items 1810 related to a case. The feed item 1810 can include
information published from the publisher 1802. Such infor-
mation can include but is not limited to a message, an identity
of'the user who published the message, an attachment, topics,
comments, and/or a date and timestamp. What information is
displayed in each feed item 1810 can depend on contextual
factors, such as the profile of the user viewing the feed item
1810, the page layout on which the feed item 1810 is dis-
played, and the type of display device from which the feed
item 1810 is displayed. In some implementations, the feed
item 1810 can include an actionable selection 1812 to per-
form further actions on the case from the information feed
1806. For example, as illustrated in FIG. 18, a feed item 1810
allows a user to reply or reply all to an email message in the
information feed 1806.

Customization tools like Visualforce provide a framework
for building custom user interfaces that can be hosted natively
in the on-demand service environment. The framework can
include atag-based markup language, similar to HTML. Each
tag can correspond to a coarse or fine-grained user interface
component, such as a section of'a page, arelated list, ora field.

A user can control the layout and appearance of a page by
programming and building a page using Visualforce. Visual-
force pages may be served from a different domain than a
service cloud console application. Visualforce pages are ren-
dered on the server and displayed on a client device, typically
through a web browser. A Visualforce page includes at least
Visualforce markup and Visualforce controller. Visualforce
markup can include Visualforce tags, HTML, Javascript®, or
any other web-enabled code embedded within an individual
<apex:page> tag. The markup can define the user interface
components to appear on the page and the way they appear. A
Visualforce controller is a set of instructions that specify what
happens when a user interacts with the components specified
in the Visualforce markup. The interaction can include certain
triggers, such as when a user clicks on a button or link, for
example. The Visualforce controller can also provide data
that is displayed on the page and modify the behaviors of the
components specified in the Visualforce markup. Customized
controllers can deliver the flexibility to define logic, naviga-
tion, algorithms, and database and web services interactivity.

An example of instructions for creating a Visualforce page,
such as a page including the publisher 1802 in FIG. 18, can
include the following:

<apex:page standardController="Case”>

<!-- Repositions publisher tabs to a horizontal arrangement on top of
the page -->

<ul class="demoNav” style="list-style: none; overflow: hidden”>

<li style="float:left”><a id="custom__email_ tab”

class="selected”
href="javascript:void(0);”
onclick=
“getDemoSidebarMenu().selectMenultem(‘custom__email_ tab”);”>
Email Customer</1i>

<li style="float:left”><a id="custom__log_ call_ tab”

US 9,241,017 B2

47

-continued

48

-continued

href="javascript:void(0);”
onclick=

“getDemoSidebarMenu().selectMenultem(‘custom__log call_tab’);”>

<spanclass="menultem”>
Log Call
<li style="float:left”><a id="custom__portal__tab”
href="javascript:void(0);”
onclick=
“getDemoSidebarMenu().selectMenultem(‘custom__portal_tab’);”>
<spanclass="menultem”>Portal Answer</1i>
<li style="float:left”><a id="custom__detail_tab”
href="javascript:void(0);”
onclick=
“getDemoSidebarMenu().selectMenultem(‘custom__detail_ tab”);”>
<spanclass="menultem”>Case Details
<ful>
<!-- Email publisher -->
<div id=“custom__email__pub_ v{*>
<apex:emailPublisher entityld="{!case.id}”
width="80%"
emailBodyHeight="10em”
showAdditionalFields="false”
enableQuickText="true”
toAddresses="{!case.contact.email }”
toVisibility="readOnly”
fromAddresses="support@cirrus.com”
onSubmitSuccess="refreshFeed();” />
</div>
<!-- Log call publisher -->
<div id="custom__log_ call v{” style="display:none”>
<apex:logCallPublisher entityld="{!case.id}”
width="80%"
logCallBodyHeight="10em”
reRender="demoFeed”
onSubmitSuccess="refreshFeed();” />
</div>
<!-- Portal publisher -->
<div id="custom__portal_ v{” style="display:none”>
<support:portalPublisher entityld="{!case.id}”
width="80%"
answerBodyHeight="10em”
reRender="demoFeed”
answerBody="Dear {!Case.Contact.FirstName},\n\nHere is
the solution to your case.\n\nBest regards,\n\nSupport”
onSubmitSuccess="refreshFeed();” />
</div>
<!-- Case detail page -->
<div id=“custom__detail_v{” style="display:none”>
<apex:detail inlineEdit="true” relatedList="true”
rerender="demoFeed” />
</div>
<!-- Include library for using service desk console API -->
<apex:includeScript value="/support/console/25.0/integration.js”/>
<!-- Javascript for switching publishers -->
<script type="text/javascript”>
function DemoSidebarMenu() {

var menus = {“customiemailitab” : “custom__email__pub_ vf”,

“custom__log_call_tab”: “custom_log_ call_vf”,
“custom__portal__tab” : “custom_ portal_ vf”,
“customn__detail tab” : “customidetailivf’};
this.selectMenultem = function(tabld) {
for (var index in menus) {
var tabEl = document.getElementById(index);
var viEl =
document.getElementByld(menus[index]);
if (index == tabld) {
tabEl.className = “selected”;
vfElstyle.display = “block™;
}else {
tabEl.className = “*;
} viELstyle.display = “none”;
¥
¥
i

var demoSidebarMenu;
var getDemoSidebarMenu = function() {

10

15

20

25

30

35

40

45

50

55

60

65

if (!demoSidebarMenu) {
demoSidebarMenu = new DemoSidebarMenu();

return demoSidebarMenu;
H
</script>
<!-- Javascript for firing event to refresh feed in the sidebar -->
<script type="text/javascript’>
function refreshFeed() {
sforce.console. fireEvent(*Cirrus.samplePublisherVFPage.RefreshFeed-
Event’, null, null);

</script>
</apex:page>

Visualforce may provide standard pre-defined instructions
for certain Visualforce components, including the apex:
emailPublisher component, apex:logCallPublisher compo-
nent, apex:caseArticles component, support:CaseFeed com-
ponent, and support:portalPublisher component. As shown in
the instructions for creating the Visualforce page above, any
of these components can have their dimensions customized
and/or text pre-populated into data fields of the component.

Returning to FIG. 16, at block 1608, a first interaction
associated with the first component is received at the com-
puting device, as generally described at block 1508 of the
method 1500. The first interaction can include any type of
occurrence that causes cross-domain communication. The
first interaction can include a user input regarding the first
component, and can include performing an operation with
reference to the first component. For example, one such inter-
action can include performing a request to attach a file or
embed a file from the first database system with the second
component. Another such interaction can include a request to
perform a search from the first component on the second
database system.

FIG. 19 shows an example of a user interface 1900 with a
publisher 1902 and a knowledge articles component 1904,
according to some implementations. The user interface 1900
provides at least two frames for exposing content from at least
two different database systems at two different network
domains. One frame on the left side of the user interface 1900
exposes the publisher 1902, and the other frame on the right
side of the user interface 1900 exposes KAs from a knowl-
edge articles searching tool.

As discussed earlier herein, the publisher 1902 may
include a plurality of publisher actions 1908, such as Email
Customer, Log Call, Portal Answer, and Case Details. Selec-
tion of one of the publisher actions 1908 causes the publisher
1902 to display an interface specific to the selected publisher
action 1908.

The knowledge articles component 1904 enables a user to
access and search through a database of a plurality of KAs.
The knowledge articles component 1904 includes a box 1916
configured to receive an alpha-numeric or other character-
based input into a search query field. The search query may
access the database containing the plurality of KAs to return
a list of relevant results. In some implementations, the box
1916 for performing the search query can be outside of the
knowledge articles component 1904.

Thelist of relevant article results provides one or more KAs
1918 to be displayed in the knowledge articles component
1904. Each listed KA 1918 can include a title of the KA as
well as a short abstract corresponding to the KA. In some
implementations, the title of the KA can provide a link to the
KA that can open a window for viewing the KA upon selec-
tion. The short abstract corresponding to the KA can include

US 9,241,017 B2

49

one or more rows describing the contents of the KA, along
with other metadata. In some implementations, a user can
select one or more of the listed KAs 1918 by clicking or
highlighting the desired KAs, or selecting checkboxes adja-
cent to the desired KAs.

In FIG. 19, a user can also interact with the knowledge
articles component 1904 by performing an action with one or
more desired KAs from the list of KAs 1918. For example, a
user can select a dropdown menu adjacent to the desired KA,
which displays a menu of selectable actions 1920. As shown
in FIG. 19, the menu of selectable actions 1920 includes
“Email to Customer” and “Attach to Case”. Selecting “Email
to Customer” causes the selected KA to be rendered into an
attachment in the publisher 1902 on the left side for emailing
a customer. Selecting “Attach to Case” causes the selected
KA to be rendered into an attachment and associated with the
case on the left side.

Returning to FIG. 16, at block 1612, a data source stored in
the first database system and associated with a first identifier
(first ID) is identified. Each of the data sources in the first
database system can have an associated ID. The data sources
can be part of a collection of objects, such as a set of tables,
containing IDs for each of the data sources. This can be
represented by rows in the tables, with each table organized
by predefined categories. The first database system can
include a searchable database of data sources, such as a plu-
rality of articles, products, locations, services, reports, itiner-
aries, workflows, pictures, and videos, among many other
data sources including but not limited to contracts, contacts,
user profiles, accounts, notes, chat transcripts, custom forms,
surveys, dashboards, tasks, .pdf files, emails, Sharepoint®
documents, and any third party system document or struc-
tured data.

A desired data source may be identified after a user per-
forms a search query through the searchable database. The
search query may be received for a table or set of tables for a
plurality of data sources (e.g., articles database). The search
query can include the first ID for locating the appropriate data
source. In various implementations, the search query may be
initiated from the first component by the user. In other imple-
mentations, the search query may be initiated outside the first
component by the user. In fact, the search query may be
initiated from the second component to interact with the first
component. The user may provide an alpha-numeric or other
character-based input into a search query field. In some
implementations, as the user is providing the input for the
search query, results may be concurrently and dynamically
displayed in the first component according to a search-as-
you-type or auto-complete function. Results may be dis-
played as a list of selectable options in the first components,
where the results may include one or more data sources asso-
ciated with the first ID.

Taking from the example in FIG. 19 above, a desired data
source can be a KA having an associated article ID. A user
identifies the KA with its associated article ID after selecting
the KA and initiating a request to perform an operation, such
as attaching the article to a case or emailing the article to a
customer.

At block 1616, the data source associated with the first ID
is retrieved for storage at the computing device. Upon iden-
tifying the data source associated with the first ID, the data
source may be extracted from the first database system and
rendered into a suitable format for storage in the computing
device. For example, an article in a database of articles may be
rendered into a portable document format (PDF) for storage.
Other examples include a video being rendered into a storage
format such as Audio Video Interleave (AVI) or a picture

10

15

20

25

30

35

40

45

50

55

60

65

50

being rendered into a storage format such as Joint Photo-
graphic Experts Group (JPEG). In some implementations, the
data source as rendered and stored at the computing device
has a second identifier (second ID). Whereas the second 1D
references the data source as stored at the computing device,
the first ID references the data source as provided in the first
database system. In some implementations, the data source as
rendered for storage at the computing device may be tempo-
rarily stored.

Taking from the example in FIG. 19 above, after the KA
with its associated article ID is identified, the KA may be
rendered into a PDF for temporary storage at a server. The KA
as rendered in a PDF can have an associated attachment 1D
that is different from its article ID.

At block 1620, a reference in the second component is
provided in the user interface, where the reference includes
information related to the first interaction with the first com-
ponent, as generally described at block 1512 of the method
1500. The reference may include metadata related to the data
source as rendered for storage at the computing device. In
some implementations, the reference may be exposed in the
second component as an attachment, a link, an image, a video
file, an audio file, a bar code, a 3D rendering, a structured
form, an unstructured document, or other form. In some
implementations, the reference includes instructions for
retrieving the data source, with information that includes the
second ID. The reference may be enabled by an AP, such as
a cross-domain API, which provides a communication bridge
between the first component and the second component.
Thus, the user interface utilizes the API so that the reference
can be provided in the second component based from an
interaction with the first component. The user interface uses
the API so that any interaction with the first component is
outputted as a reference in the second component in a seam-
less, integrated fashion.

FIG. 20 shows an example of a user interface 2000 with a
publisher 2002 having an article attached from a data source
component 2004, according to some implementations. The
user interface 2000 includes the publisher 2002 and an infor-
mation feed 2006 in a frame on the left side of the user
interface 2000, and a data source component 2004 in another
frame on the right side of the user interface 2000. The user
interface 2000 also includes contextual data along the top of
the page. This includes user profile information, such as a
sales agent profile, and record information, such as the sub-
ject of a case. The publisher 2002 can include a plurality of
publisher actions 2008, including a publisher action for
emailing customers. The data source component 2004 may
include Suggested Articles 2016 from a database of KAs as
well as Next Best Offers 2020 from a database of products.
Any of the articles or products in the data source component
2004 may be selected by a user to perform an operation
therewith. Here, a user selected an article 2018 from the data
source component 2004 and attached the article 2018 as an
attachment 2014 in the publisher 2002. The attachment 2014
is displayed in the form of the title of the selected article
rendered into a PDF. The attachment 2014 may further
include metadata pertinent to the article 2018 as well as
instructions for retrieving the article 2018 stored as a PDF at
a server.

Alternatively, or in addition to attaching an article from the
data source component 2004, a user can interact with the data
source component 2004 and provide other references in the
publisher 2002. As illustrated in FIG. 20, a user can select a
product from the Next Best Offers 2020 to populate into the
publisher 2002 to be sent to a customer. A user can interact
with exposed content in a frame to affect another frame in the

US 9,241,017 B2

51

same user interface in other ways not shown in FIG. 19. For
example, a user can drag and drop a location of a dealership
from a map service, such as Google Maps, into an email
composer, where the map service and the email composer are
exposed in separate frames hosted on separate servers.

Returning to FIG. 16, at block 1624, a second interaction
associated with the second component regarding the refer-
ence is received at the computing device, as generally
described at block 1516 of the method 1500.

At block 1628, a second database system is updated with
the second interaction. The second interaction can include
second information to update the second database system
with. The second database system can include a data object or
a collection of data objects, which can be represented by
tables. Each row in the table can represent a data object. By
way of example, each interaction with the second component
can create, update, or delete a row in the table for a collection
of data objects.

The update to the second database system can also include
the reference, which includes information related to the first
interaction in the first component. For example, the reference
as provided in the update can include a link to the data source
as rendered and stored in the computing device. In addition,
or in the alternative, the update to the second database system
can include metadata regarding the data source as rendered
and stored in the computing device. In some implementa-
tions, the data source can be an attachment, such as a selected
article, product, map, etc.

At block 1632, a feed item associated with the update is
provided for inclusion in an information feed in the user
interface. The feed item may include information related to
the update, including the reference as provided in the second
component. The reference in the feed item can include a link
to the data source as rendered and stored in the computing
device. Other metadata regarding the data source may also be
presented in the feed item, such as the title, author, short
abstract, date of publication, language, etc. The feed item may
also include additional information depending on the nature
of the second interaction. Such additional information can
include a message, an identity of a user who published the
message, an attachment, topics, and/or a date and timestamp.
For example, if the second interaction included sending an
email message, the feed item can include the sender, the
recipients, the subject line, and the email message. If the
second interaction included sending an answer via a customer
service website, the feed item can include the submitted
answer. In some implementations, the feed item can include
an actionable selection for performing additional operations
on the second component from the information feed.

In some implementations, the method 1600 further
includes sending a network transmission to one or more enti-
ties including the data source associated with the second 1D.
For example, the second component can be an email pub-
lisher configured to send email to customers, and the one or
more entities can be email recipients. Thus, the network trans-
mission can include the data source associated with the sec-
ond ID sent to the email recipients. In some implementations,
as the network transmission is sent to the computing device
with second information and the reference, the data source as
rendered and stored in the computing device is retrieved. The
network transmission from the computing device contains
instructions to retrieve the data source from the computing
device. In other words, as the email is sent out, the attachment
is pulled from the server and also sent out with the email.

The specific details of the specific aspects of implementa-
tions disclosed herein may be combined in any suitable man-
ner without departing from the spirit and scope of the dis-

10

15

20

25

30

35

40

45

55

60

65

52

closed implementations. However, other implementations
may be directed to specific implementations relating to each
individual aspect, or specific combinations of these indi-
vidual aspects.

While the disclosed examples are often described herein
with reference to an implementation in which an on-demand
database service environment is implemented in a system
having an application server providing a front end for an
on-demand database service capable of supporting multiple
tenants, the present implementations are not limited to multi-
tenant databases nor deployment on application servers.
Implementations may be practiced using other database
architectures, i.e., ORACLE®, DB2® by IBM and the like
without departing from the scope of the implementations
claimed.

It should be understood that some of the disclosed imple-
mentations can be embodied in the form of control logic using
hardware and/or using computer software in a modular or
integrated manner. Other ways and/or methods are possible
using hardware and a combination of hardware and software.

Any of the software components or functions described in
this application may be implemented as software code to be
executed by a processor using any suitable computer lan-
guage such as, for example, Java, C++ or Perl using, for
example, conventional or object-oriented techniques. The
software code may be stored as a series of instructions or
commands on a computer-readable medium for storage and/
or transmission, suitable media include random access
memory (RAM), a read only memory (ROM), a magnetic
medium such as a hard-drive or a floppy disk, or an optical
medium such as a compact disk (CD) or DVD (digital versa-
tile disk), flash memory, and the like. The computer-readable
medium may be any combination of such storage or trans-
mission devices. Computer-readable media encoded with the
software/program code may be packaged with a compatible
device or provided separately from other devices (e.g., via
Internet download). Any such computer-readable medium
may reside on or within a single computing device or an entire
computer system, and may be among other computer-read-
able media within a system or network. A computer system,
or other computing device, may include a monitor, printer, or
other suitable display for providing any of the results men-
tioned herein to a user.

While various implementations have been described
herein, it should be understood that they have been presented
by way of example only, and not limitation. Thus, the breadth
and scope of the present application should not be limited by
any of the implementations described herein, but should be
defined only in accordance with the following and later-sub-
mitted claims and their equivalents.

What is claimed is:

1. A method for interacting with components across difter-
ent domains in a single user interface providing access to an
enterprise social networking system implemented using a
database system comprising a customer relationship manage-
ment (CRM) database, the method comprising:

providing, from a server associated with the database sys-

tem to a computing device, data to generate a user inter-
face comprising a first component and a second compo-
nent, the first component configured to expose content
from a first network domain, the second component
configured to expose content from a second network
domain, the second network domain being different
from the first network domain, the second component
comprising a presentation of a CRM record feed dedi-
cated to an identifiable CRM record stored in the CRM
database, the CRM record feed configured to share, with

US 9,241,017 B2

53

one or more users following the identifiable CRM
record, updates associated with the identifiable CRM
record, the second component further comprising a pub-
lisher configured to receive and publish data to the CRM
record feed;
receiving, at the server from the computing device, an
indication of a first interaction with the first component;

causing, by the server, responsive to receiving the indica-
tion of the first interaction, a reference to populate a field
of the publisher of the second component, the reference
comprising first data related to the first interaction with
the first component;

receiving, at the server from the computing device, an

indication of a second interaction with the second com-
ponent regarding the reference; and

causing, by the server, responsive to receiving the indica-

tion of the second interaction, the publisher to publish a
feed item to the CRM record feed, the feed item com-
prising or identifying the reference.

2. The method of claim 1, further comprising:

identifying, by the server, a data object stored in the data-

base system and associated with a first identifier.

3. The method of claim 2, further comprising:

retrieving, by the server, the data object associated with the

first identifier; and

identifying, by the server, a second identifier.

4. The method of claim 3, wherein the reference is used to
retrieve the data object with the second identifier.

5. The method of claim 3, wherein retrieving the data
object associated with the first identifier comprises rendering
the data object into an attachment file, the attachment file
associated with the reference provided in the second compo-
nent.

6. The method of claim 2, further comprising:

receiving, at the server from the computing device, a net-

work transmission to one or more entities including the
data object with the second identifier.

7. The method of claim 1, wherein the field of the publisher
is configured to be populated without refreshing the user
interface.

8. The method of claim 1, wherein the first network domain
is outside of a multi-tenant database environment and the
second network domain is within the multi-tenant database
environment.

9. The method of claim 1, further comprising:

updating, by the server, the database system with the feed

item published to the CRM record feed.

10. The method of claim 1, wherein the first component
comprises a searchable database of a plurality of articles.

11. The method of claim 1, wherein the indication of the
first interaction with the first component includes at least one
of: arequest to attach a data object, embed a data object, view
a data object, download a data object, upload a data object,
record a data object, search for a data object, and email a data
object.

12. The method of claim 1, wherein the reference is used to
communicate through an application programming interface
(APD).

13. The method of claim 12, wherein the first interaction
and the second interaction are received at the server from the
computing device through the API.

14. The method of claim 1, wherein the second network
domain is controlled by a data service provider, and the first
network domain is controlled by an entity different from the
data service provider.

15. A database system for interacting with components
across different domains in a single user interface providing

10

15

20

25

30

35

40

45

50

55

60

65

54

access to an enterprise social networking system imple-
mented using the database system, the database system com-
prising a customer relationship management (CRM) data-
base, the database system comprising one or more processors
configured to execute one or more instructions to:
provide data to generate a user interface comprising a first
component and a second component, the first compo-
nent configured to expose content from a first network
domain, the second component configured to expose
content from a second network domain, the second net-
work domain being different from the first network
domain, the second component comprising a presenta-
tion of a CRM record feed dedicated to an identifiable
CRM record stored in the CRM database, the CRM
record feed configured to share, with one or more users
following the identifiable CRM record, updates associ-
ated with the identifiable CRM record, the second com-
ponent further comprising a publisher configured to
receive and publish data to the CRM record feed;
process an indication of a first interaction with the first
component;
provide, responsive to receiving the indication of the first
interaction, a reference to populate a field of the pub-
lisher of the second component, the reference compris-
ing first data related to the first interaction with the first
component;
process an indication of a second interaction with the sec-
ond component regarding the reference; and
cause, responsive to receiving the indication of the second
interaction, the publisher to publish a feed item to the
CRM record feed, the feed item comprising or identify-
ing the reference.
16. The database system of claim 15, the database system
further configurable to:
identify a data object stored in the database system and
associated with a first identifier.
17. The database system of claim 16, the database system
further configurable to:
retrieve the data object associated with the first identifier.
18. A computer program product comprising program code
stored on a non-transitory computer readable storage medium
to be executed by at least one processor, the program code
comprising instructions executable to cause a method to be
performed for interacting with components across different
domains in a single user interface providing access to an
enterprise social networking system implemented using a
database system comprising a customer relationship manage-
ment (CRM) database, the method comprising:
providing, from a server associated with the database sys-
tem to a computing device, data to generate a user inter-
face comprising a first component and a second compo-
nent, the first component configured to expose content
from a first network domain, the second component
configured to expose content from a second network
domain, the second network domain being different
from the first network domain, the second component
comprising a presentation of a CRM record feed dedi-
cated to an identifiable CRM record stored in the CRM
database, the CRM record feed configured to share, with
one or more users following the identifiable CRM
record, updates associated with the identifiable CRM
record, the second component further comprising a pub-
lisher configured to receive and publish data to the CRM
record feed;
receiving, at the server from the computing device, an
indication of a first interaction with the first component;

US 9,241,017 B2

55

causing, by the server, responsive to receiving the indica-
tion of the first interaction, a reference to populate a field
of the publisher of the second component, the reference
comprising first data related to the first interaction with
the first component;

receiving, at the server from the computing device, an
indication of a second interaction with the second com-
ponent regarding the reference; and

causing, by the server, responsive to receiving the indica-
tion of the second interaction, the publisher to publish a
feed item to the CRM record feed, the feed item com-
prising or identifying the reference.

19. The computer program product of claim 18, wherein

the method further comprises:

identifying, by the server, a data object stored in the data-
base system and associated with a first identifier;

retrieving, by the server, the data object associated with the
first identifier;

identifying, by the server, a second identifier; and

receiving, at the server from the computing device, a net-
work transmission to one or more entities including the
data object with the second identifier.

#* #* #* #* #*

10

15

20

56

